Algebra 1: Math20008: Sheet 1

G.C.Smith@bath.ac.uk

October 12, 2004

The course web site is available via http://www.bath.ac.uk/~masgcs/

1. Let V be a vector space over F. Here is a proof that $0\mathbf{v} = \mathbf{0}$ for all $\mathbf{v} \in V$. First note that 0 + 0 = 0 (Field Axiom 3). Therefore $(0+0)\mathbf{v} = 0\mathbf{v}$. Now by Vector Space Axiom 7 we have $0\mathbf{v} + 0\mathbf{v} = 0\mathbf{v}$. Now, by Vector Space Axiom 4 the vector $0\mathbf{v}$ has an additive inverse $-0\mathbf{v}$. It follows that

$$(0\mathbf{v} + 0\mathbf{v}) + -0\mathbf{v} = 0\mathbf{v} + -0\mathbf{v}.$$

Now rebracket the left hand side using Vector Space Axiom 2. Therefore

$$0\mathbf{v} + (0\mathbf{v} + -0\mathbf{v}) = 0\mathbf{v} + -0\mathbf{v}.$$

Now on both sides we have the opportunity to use the definition of an additive inverse so $0\mathbf{v}+\mathbf{0}=\mathbf{0}$. Now by Vector Space Axiom 3 we deduce that

 $0\mathbf{v} = \mathbf{0}.$

Now, using this as a model, and quoting this result if necessary, prove that if $\mathbf{v} \in V$, then $(-1)\mathbf{v} = -\mathbf{v}$.

- 2. Let V be a vector space over F. Suppose that U is a subset of V. Show that U is a subspace of V if and only if the following three conditions are satisfied:
 - (a) $U \neq \emptyset$.
 - (b) If $\mathbf{x} \in U$ and $\lambda \in F$, then $\lambda \mathbf{x} \in U$.
 - (c) If \mathbf{x} , $\mathbf{y} \in U$, then $\mathbf{x} + \mathbf{y} \in U$.

- Consider the usual Cartesian description of the plane as ℝ² (with perpendicular axes). This collection of ordered pairs is a vector space over ℝ in a natural way as discussed in lectures. In each case you should justify your answer.
 - (a) Prove that the ordered pairs corresponding a straight line through the origin form a subspace.
 - (b) Consider the straight line $S = \{(x, 1) \mid x \in \mathbb{R}\}$. Is this a subspace?
 - (c) Consider the circle $C = \{(x, y) \mid x^2 + (y 1)^2 = 1\}$. Is this a subspace?
 - (d) Prove that $Z = \{(0,0)\}$ is a subspace.
 - (a) Prove that \emptyset is not a subspace.
- 4. Describe as many different subspaces of \mathbb{R}^3 as you can find.
- 5. Let $\mathbb{R}[X]$ denote the set of polynomials in X which have coefficients in \mathbb{R} . This set has a natural vector space structure over \mathbb{R} . Which of the following are subspaces of $\mathbb{R}[X]$, and why?
 - (a) $\{f \mid f \in \mathbb{R}[X], f(42) = 0\}.$
 - (b) $\{f \mid f \in \mathbb{R}[X], f(42) = 1\}.$
 - (c) $\{f \mid f \in \mathbb{R}[X], f \text{ has at most two real roots }\}$.
 - (d) $\{f \mid f \in \mathbb{R}[X], \deg f \leq n\}$ where $n \in \mathbb{N} \cup \{0\}$. Note that the degree of the zero polynomial is $-\infty$, a symbol deemed to be smaller than all integers.
 - (e) $\{f \mid f \in \mathbb{R}[X], f''(X) Xf'(X) + f(X) = 0\}$ where a dash in the exponent indicates differentiation with respect to X.
 - (f) $\{f \mid f(X)^2 = f(X^2)\}.$
- 6. Suppose that V is a vector space and that $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in V$. Let

$$U = \left\{ \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mid \lambda_i \in \mathbb{R} \text{ for all } 1 \le i \le n \right\}.$$

Show that U is a subspace of V.

7. Suppose that U, W are subspaces of V and that $U \cup W$ is also a subspace of V. Prove that either $U \subseteq W$ or $W \subseteq U$.