Algebra 1: Math20008: Sheet 1

G.C.Smith@bath.ac.uk

October 12, 2004

The course web site is available via http://www.bath.ac.uk/~masgcs/

1. Let V be a vector space over F. Here is a proof that $0 \mathbf{v}=\mathbf{0}$ for all $\mathbf{v} \in V$. First note that $0+0=0$ (Field Axiom 3). Therefore $(0+0) \mathbf{v}=0 \mathbf{v}$. Now by Vector Space Axiom 7 we have $0 \mathbf{v}+0 \mathbf{v}=0 \mathbf{v}$. Now, by Vector Space Axiom 4 the vector $0 \mathbf{v}$ has an additive inverse $-0 \mathbf{v}$. It follows that

$$
(0 \mathbf{v}+0 \mathbf{v})+-0 \mathbf{v}=0 \mathbf{v}+-0 \mathbf{v}
$$

Now rebracket the left hand side using Vector Space Axiom 2. Therefore

$$
0 \mathbf{v}+(0 \mathbf{v}+-0 \mathbf{v})=0 \mathbf{v}+-0 \mathbf{v}
$$

Now on both sides we have the opportunity to use the definition of an additive inverse so $0 \mathbf{v}+\mathbf{0}=\mathbf{0}$. Now by Vector Space Axiom 3 we deduce that

$$
0 \mathbf{v}=\mathbf{0}
$$

Now, using this as a model, and quoting this result if necessary, prove that if $\mathbf{v} \in V$, then $(-1) \mathbf{v}=-\mathbf{v}$.
2. Let V be a vector space over F. Suppose that U is a subset of V. Show that U is a subspace of V if and only if the following three conditions are satisfied:
(a) $U \neq \emptyset$.
(b) If $\mathbf{x} \in U$ and $\lambda \in F$, then $\lambda \mathbf{x} \in U$.
(c) If $\mathbf{x}, \mathbf{y} \in U$, then $\mathbf{x}+\mathbf{y} \in U$.
3. Consider the usual Cartesian description of the plane as \mathbb{R}^{2} (with perpendicular axes). This collection of ordered pairs is a vector space over \mathbb{R} in a natural way as discussed in lectures. In each case you should justify your answer.
(a) Prove that the ordered pairs corresponding a straight line through the origin form a subspace.
(b) Consider the straight line $\mathrm{S}=\{(x, 1) \mid x \in \mathbb{R}\}$. Is this a subspace?
(c) Consider the circle $C=\left\{(x, y) \mid x^{2}+(y-1)^{2}=1\right\}$. Is this a subspace?
(d) Prove that $Z=\{(0,0)\}$ is a subspace.
(a) Prove that \emptyset is not a subspace.
4. Describe as many different subspaces of \mathbb{R}^{3} as you can find.
5. Let $\mathbb{R}[X]$ denote the set of polynomials in X which have coefficients in \mathbb{R}. This set has a natural vector space structure over \mathbb{R}. Which of the following are subspaces of $\mathbb{R}[X]$, and why?
(a) $\{f \mid f \in \mathbb{R}[X], f(42)=0\}$.
(b) $\{f \mid f \in \mathbb{R}[X], f(42)=1\}$.
(c) $\{f \mid f \in \mathbb{R}[X], f$ has at most two real roots $\}$.
(d) $\{f \mid f \in \mathbb{R}[X], \operatorname{deg} f \leq n\}$ where $n \in \mathbb{N} \cup\{0\}$. Note that the degree of the zero polynomial is $-\infty$, a symbol deemed to be smaller than all integers.
(e) $\left\{f \mid f \in \mathbb{R}[X], f^{\prime \prime}(X)-X f^{\prime}(X)+f(X)=0\right\}$ where a dash in the exponent indicates differentiation with respect to X.
(f) $\left\{f \mid f(X)^{2}=f\left(X^{2}\right)\right\}$.
6. Suppose that V is a vector space and that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in V$. Let

$$
U=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mid \lambda_{i} \in \mathbb{R} \text { for all } 1 \leq i \leq n\right\} .
$$

Show that U is a subspace of V.
7. Suppose that U, W are subspaces of V and that $U \cup W$ is also a subspace of V. Prove that either $U \subseteq W$ or $W \subseteq U$.

