Algebra 1; MA20008; Sheet 2

G.C.Smith@bath.ac.uk

$18-x-2004$

1. Suppose that U and V are vector spaces over the same field F, and that W is a subspace of V. Let $\alpha: U \rightarrow V$ be a linear map. Show that $Y=\{\mathbf{x} \mid \mathbf{x} \in U, \alpha(\mathbf{x}) \in V\}$ is a subspace of U.
2. Suppose that U and V are vector spaces over the same field F, and that we have linear maps $\alpha: U \longrightarrow V$ and $\beta: U \longrightarrow V$. Show that $Z=\{\mathbf{x} \mid \mathbf{x} \in U, \alpha(\mathbf{x})=\beta(\mathbf{x})\}$ is a subspace of U.
3. Let \mathbb{C} be the complex numbers, viewed as a vector space over \mathbb{R}. We have shown that the map $\varphi: \mathbb{C} \longrightarrow \mathbb{C}$ defined by complex conjugation is a linear map. Let n be a natural number, and define θ_{n} to be multiplication by $e^{\frac{2 \pi i}{n}} ;$ more formally $\theta_{n}: \mathbb{C} \longrightarrow \mathbb{C}$ with $\theta_{n}(z)=e^{\frac{2 \pi i}{n}} z$ for all $z \in \mathbb{C}$.
(a) Show that each map θ_{n} is linear.
(b) How many different maps can you get by composing the maps θ_{4} and θ_{6} ? (For example, $\theta_{4} \theta_{4} \theta_{6} \theta_{6} \theta_{4}$ is one such composition.)
(c) How many different maps can you get by composing the maps θ_{5} and φ ?
(d) How many different maps can you get by composing the maps θ_{4}, θ_{6} and φ ?
4. Let V we a vector space over a field F. We define a line as follows. Suppose that $\mathbf{a}, \mathbf{b} \in V$ with $\mathbf{b} \neq \mathbf{0}$. The set

$$
L=\{\mathbf{r} \mid \mathbf{r}=\mathbf{a}+t \mathbf{b}, t \in F\}
$$

is a line. Suppose that U is also a vector space over F and that

$$
\alpha: V \longrightarrow U
$$

is a linear map. Show that if $\mathbf{b} \notin \operatorname{Ker} \alpha$, then

$$
K=\{\alpha(\mathbf{r}) \mid \mathbf{r} \in L\}
$$

is a line. What happens if $\mathbf{b}=\mathbf{0}$?
5. Regard \mathbb{R}^{n} as a vector space over \mathbb{R}. Define a map $\mu: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{2}, x_{3}, \ldots, x_{n}, 0\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
(a) Show that μ is a linear map.
(b) Show that μ^{n} is the zero map (μ^{n} denotes the map obtained by composing n copies of μ).
(c) Show that μ^{n-1} is not the zero map.
6. Let V be a vector spaces, and suppose that α and β are both projections onto subspaces of V with suitable kernels. Suppose also that $\alpha \beta=\beta \alpha$. Show that $\alpha \beta$ is a projection.

