Algebra 1; MA20008; Sheet 2

G.C.Smith@bath.ac.uk

18-x-2004

- 1. Suppose that U and V are vector spaces over the same field F, and that W is a subspace of V. Let $\alpha : U \to V$ be a linear map. Show that $Y = \{\mathbf{x} \mid \mathbf{x} \in U, \ \alpha(\mathbf{x}) \in V\}$ is a subspace of U.
- 2. Suppose that U and V are vector spaces over the same field F, and that we have linear maps $\alpha : U \longrightarrow V$ and $\beta : U \longrightarrow V$. Show that $Z = \{ \mathbf{x} \mid \mathbf{x} \in U, \ \alpha(\mathbf{x}) = \beta(\mathbf{x}) \}$ is a subspace of U.
- 3. Let \mathbb{C} be the complex numbers, viewed as a vector space over \mathbb{R} . We have shown that the map $\varphi : \mathbb{C} \longrightarrow \mathbb{C}$ defined by complex conjugation is a linear map. Let n be a natural number, and define θ_n to be multiplication by $e^{\frac{2\pi i}{n}}$; more formally $\theta_n : \mathbb{C} \longrightarrow \mathbb{C}$ with $\theta_n(z) = e^{\frac{2\pi i}{n}z}$ for all $z \in \mathbb{C}$.
 - (a) Show that each map θ_n is linear.
 - (b) How many different maps can you get by composing the maps θ_4 and θ_6 ? (For example, $\theta_4\theta_4\theta_6\theta_6\theta_4$ is one such composition.)
 - (c) How many different maps can you get by composing the maps θ_5 and φ ?
 - (d) How many different maps can you get by composing the maps θ_4 , θ_6 and φ ?
- 4. Let V we a vector space over a field F. We define a *line* as follows. Suppose that $\mathbf{a}, \mathbf{b} \in V$ with $\mathbf{b} \neq \mathbf{0}$. The set

$$L = \{\mathbf{r} \mid \mathbf{r} = \mathbf{a} + t\mathbf{b}, \ t \in F\}$$

is a *line*. Suppose that U is also a vector space over F and that

 $\alpha:V\longrightarrow U$

is a linear map. Show that if $\mathbf{b} \notin \text{Ker } \alpha$, then

$$K = \{ \alpha(\mathbf{r}) \mid \mathbf{r} \in L \}$$

is a line. What happens if $\mathbf{b} = \mathbf{0}$?

- 5. Regard \mathbb{R}^n as a vector space over \mathbb{R} . Define a map $\mu : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $(x_1, x_2, \ldots, x_n) \mapsto (x_2, x_3, \ldots, x_n, 0)$ for all $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$.
 - (a) Show that μ is a linear map.
 - (b) Show that μ^n is the zero map (μ^n denotes the map obtained by composing *n* copies of μ).
 - (c) Show that μ^{n-1} is not the zero map.
- 6. Let V be a vector spaces, and suppose that α and β are both projections onto subspaces of V with suitable kernels. Suppose also that $\alpha\beta = \beta\alpha$. Show that $\alpha\beta$ is a projection.