Algebra 1; MA20008; Sheet 3

G.C.Smith@bath.ac.uk

$25-\mathrm{x}-2004$

1. Suppose that V is a vector space over F, and that $S \subseteq V$. Let \bar{S} be the intersection of those subspaces of V which contain the subset S, or put formally

$$
\bar{S}=\bigcap\{U \mid U \leq V, S \subseteq U\}
$$

Show that $\bar{S}=\langle S\rangle$.
2. Let V be a vector space over F and $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}} \in V$. Suppose that whenever $\theta_{1}, \ldots, \theta_{n}, \psi_{1}, \ldots, \psi_{n} \in F$ and $\sum_{i=1}^{n} \theta_{i} \mathbf{v}_{\mathbf{i}}=\sum_{i=i}^{n} \psi_{i} \mathbf{v}_{\mathbf{i}}$, then necessarily $\theta_{i}=\psi_{i}$ for each $i, 1 \leq i \leq n$. Show that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}} \in V$ is linearly independent.
3. Consider $V=\mathbb{C}$ as a vector space over \mathbb{Q}.
(a) Show that $1, \sqrt{2}, \sqrt{3}$ are linearly independent.
(b) Let $\alpha=e^{\frac{\pi i}{3}}$. Which lists of the form $1, \alpha, \ldots, \alpha^{n}$ are linearly independent? Justify your answer.
(c) Suppose that $1, \beta, \beta^{2}, \ldots, \beta^{n}$ are linearly independent. Show that $1,(\beta+1),(\beta+1)^{2}, \ldots,(\beta+1)^{n}$ are linearly independent.
4. Suppose that X and Y are both linearly independent subsets of V. Does it follow that $X \cap Y$ is linearly independent? What about $X \cup Y$?
5. Suppose that $V=U \oplus W$. We are given a sets of vectors $X \subseteq U$ and $Y \subseteq W$. Is $X \cup Y$ necessarily a linearly independent set of vectors?
6. Suppose that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is a linearly independent list of vectors in the vector space V. We are given $\mathbf{w} \in V$. Does it follow that

$$
\mathbf{v}_{\mathbf{1}}+\mathbf{w}, \mathbf{v}_{\mathbf{2}}+\mathbf{w}, \ldots, \mathbf{v}_{\mathbf{n}}+\mathbf{w}
$$

are linearly independent?
7. Suppose that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is a linearly dependent list of vectors in the vector space V. We are given $\mathbf{w} \in V$. Does it follow that

$$
\mathbf{v}_{\mathbf{1}}+\mathbf{w}, \mathbf{v}_{\mathbf{2}}+\mathbf{w}, \ldots, \mathbf{v}_{\mathbf{n}}+\mathbf{w}
$$

is linearly dependent?
8. Let $V=\mathbb{R}^{3}$ viewed as vector space over \mathbb{R}. Let $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{8}}$ be the position vectors of the vertices of a cube.
(a) Let

$$
A=\left\{\sum_{i} \lambda_{i} \mathbf{v}_{\mathbf{i}} \mid 0 \leq \lambda_{i} \leq 1 \text { for all } i, \sum_{i} \lambda_{i}=1\right\}
$$

Describe the set A, viewed as a collection of position vectors, geometrically.
(b) Let

$$
B=\left\{\sum_{i} \lambda_{i} \mathbf{v}_{\mathbf{i}} \mid \lambda_{i} \geq 0 \text { for all } i,\right\} .
$$

Under what circumstances is $B=\mathbb{R}^{3}$? Under what circumstances is B a closed half space (i.e. one side of a plane and all the points on that plane)? What other shapes can arise?

