Algebra 1; MA20008; Sheet 4

G.C.Smith@bath.ac.uk
2-xi-2004

1. Suppose that n is a natural number or 0 , and F is a field. Show that there is a vector space over F of dimension n.
2. Suppose that V is a vector space with subspaces U and W both of dimension $n<\infty$. Does it follow that V is finite dimensional? Does it follow that V has dimension n ? Does it follow that $U=W$? In each case you should supply a reason for your answer.
3. Let V be a vector space of dimension n. Suppose that $V_{0}, V_{1}, \ldots, V_{m}$ are subspaces of V with

$$
V_{0} \leq V_{1} \leq \cdots \leq V_{m}
$$

(a) Suppose that $m>n$. Show that there is $i \in\{1,2, \ldots, m\}$ such that $V_{i}=V_{i-1}$.
(b) Suppose that $m \leq n$. Show that it may be that the spaces $V_{0}, V_{1}, \ldots, V_{m}$ are distinct.
4. Suppose that $\alpha: U \longrightarrow W$ is a linear map between vector spaces over the same field. Let $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ be vectors in U.
(a) Suppose that $U=\left\langle\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle$ and α is surjective. Prove that $W=\left\langle\alpha\left(\mathbf{x}_{\mathbf{1}}\right), \alpha\left(\mathbf{x}_{\mathbf{2}}\right), \ldots, \alpha\left(\mathbf{x}_{\mathbf{n}}\right)\right\rangle$.
(b) Suppose that $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ are linearly independent and α is injective. Show that $\left.\alpha\left(\mathbf{x}_{\mathbf{1}}\right), \alpha\left(\mathbf{x}_{\mathbf{2}}\right), \ldots, \alpha\left(\mathbf{x}_{\mathbf{n}}\right)\right\rangle$ are linearly independent.
5. Let $\zeta=e^{\frac{2 \pi i}{5}} \in \mathbb{C}$.
(a) Suppose that we view \mathbb{C} as a vector space over \mathbb{Q}. Show that $1, \zeta, \zeta^{2}, \zeta^{3}$ are linearly independent.
(b) Suppose that we view \mathbb{C} as a vector space over \mathbb{R}. Show that $1, \zeta, \zeta^{2}, \zeta^{3}$ are linearly dependent.
6. Let V be a vector space with subspaces U, W such that U and W are both finite dimensional. Let $\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}$ be a basis of U and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}$ be a basis of W.
(a) Show that $U+W$ is finite dimensional.
(b) Show that $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}$ need not be a basis of $U+W$.
(c) Suppose that $U+W=U \oplus W$. Show that

$$
\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}
$$

is a basis of $U+W$.
(d) Suppose that $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}$ is a basis of $U+W$. Show that $U+W=U \oplus W$.
7. Let I be a set. Let V be the set of real valued functions on I; more formally

$$
V=\{f \mid f: I \longrightarrow \mathbb{R}\} .
$$

Define addition on V by $(f+h)(x):=f(x)+g(x)$ for all $x \in I$. If $\lambda \in \mathbb{R}$ and $f \in V$ we define $\lambda \cdot f \in V$ by $(\lambda \cdot f)(x)=(\lambda)(f(x))$ where the final multiplication is just the product (in \mathbb{R}).
(a) Check that V is now a vector space over \mathbb{R}.
(b) For each $i \in I$, define a function $\delta_{i} \in V$ where $\delta_{i}(x)=\delta_{i, x}$ (Krönecker delta). Thus $\delta_{i}(i)=1$ and $\delta_{i}(x)=0$ if $x \neq i$. Show that the vectors δ_{i} are linearly independent.
(c) Let $W=\left\langle\delta_{i}: i \in I\right\rangle$ be the span of all the δ_{i}. Show that the vectors δ_{i} form a basis of W (in that they are a linearly independent spanning set for W).
(d) Show that $W=V$ if and only if I is finite.
(e) Give an explicit example of a vector space with an clearly describable uncountable basis (no set theoretic metaphysics allowed).

