MA20008 Algebra 1, 2004, Sheet 5

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let V be a vector space of dimension n.

(a) Suppose that we have subspaces

$$0 = V_0 < V_1 < V_2 \dots < V_n = V$$

with dim $V_i = i$ for every i = 0, 1, ..., n. For each i > 0 choose $\mathbf{v}_i \in V_i$ but $\mathbf{v}_i \notin V_{i-1}$. Show that

$$\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$$

is a basis of V.

(b) Suppose that

$$\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$$

is a basis of V. Show that there are subspaces

$$0 = V_0 < V_1 < V_2 \cdots < V_n = V$$

with dim $V_i = i$ for every i = 0, 1, ..., n such that $\mathbf{v_i} \in V_i$ but $\mathbf{v_i} \notin V_{i-1}$ for every i > 0.

- 2. Let V be a vector space of dimension n. Suppose that $\alpha: V \longrightarrow V$ is a linear map.
 - (a) Show that $V \ge \text{Im } \alpha \ge \text{Im } \alpha^2 \ge \ldots \ge 0$. Observation: Im α^r denotes the map defined by composing r copies of α .
 - (b) Show that $0 \leq \text{Ker } \alpha \leq \text{Ker } \alpha^2 \leq \cdots \leq V$.
 - (c) Suppose that r is a natural number and Im $\alpha^r = \text{Im } \alpha^{r+1}$. Show that Im $\alpha^t = \text{Im } \alpha^r$ for all natural numbers $t \ge r$.

- (d) Let V be a vector space of dimension n. Suppose that $\alpha : V \longrightarrow V$ is a linear map such that $\alpha^2 = 0$ (the zero map). Show that the nullity ν_{α} satisfies $2\nu_{\alpha} \ge n$.
- (e) Suppose that there is a natural number m such that α^m is the zero map 0. Prove that α^n is 0.
- 3. Suppose that V is a vector space of dimension n and that $\alpha : V \longrightarrow V$ is a linear map. Suppose that α^3 is 0, the zero map. Show that $\nu_{\alpha} \ge n/3$ where ν_{α} denotes the nullity of α . Hint: let $V_0 = V$, $V_1 = \text{Im } \alpha$ and $V_2 = \text{Im } \alpha^2$. Let $\alpha_1 : V \longrightarrow V_1$ and $\alpha_2 : V_1 \longrightarrow V_2$ be the maps defined by $\alpha_i(\mathbf{v}) = \alpha(\mathbf{v})$ for all $\mathbf{v} \in V_{i-1}$. Deploy the rank nullity theorem.
- 4. Let V be a finite dimensional vector space, with W, X, Y and Z all subspaces of V.
 - (a) Show that

$$\dim(X \cap Y) + \dim((X + Y) \cap Z)$$

=
$$\dim(Y \cap Z) + \dim((Y + Z) \cap X)$$

=
$$\dim(Z \cap X) + \dim((Z + X) \cap Y).$$

(b) Show that

$$\dim(W \cap X) + \dim(Y \cap Z) + \dim((W + X) \cap (Y + Z))$$

=
$$\dim(W \cap Y) + \dim(X \cap Z) + \dim((W + Y) \cap (X + Z))$$

=
$$\dim(W \cap Z) + \dim(X \cap Y) + \dim((W + Z) \cap (X + Y))$$

Hint: this question is not hard. You need an idea. Please do not start picking bases; that way madness lies.