MA20008 Algebra 1, 2004, Sheet 5

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let V be a vector space of dimension n.
(a) Suppose that we have subspaces

$$
0=V_{0}<V_{1}<V_{2} \cdots<V_{n}=V
$$

with $\operatorname{dim} V_{i}=i$ for every $i=0,1, \ldots, n$. For each $i>0$ choose $\mathbf{v}_{\mathbf{i}} \in V_{i}$ but $\mathbf{v}_{\mathbf{i}} \notin V_{i-1}$. Show that

$$
\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}
$$

is a basis of V.
(b) Suppose that

$$
\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}
$$

is a basis of V. Show that there are subspaces

$$
0=V_{0}<V_{1}<V_{2} \cdots<V_{n}=V
$$

with $\operatorname{dim} V_{i}=i$ for every $i=0,1, \ldots, n$ such that $\mathbf{v}_{\mathbf{i}} \in V_{i}$ but $\mathbf{v}_{\mathbf{i}} \notin V_{i-1}$ for every $i>0$.
2. Let V be a vector space of dimension n. Suppose that $\alpha: V \longrightarrow V$ is a linear map.
(a) Show that $V \geq \operatorname{Im} \alpha \geq \operatorname{Im} \alpha^{2} \geq \ldots \geq 0$. Observation: $\operatorname{Im} \alpha^{r}$ denotes the map defined by composing r copies of α.
(b) Show that $0 \leq \operatorname{Ker} \alpha \leq \operatorname{Ker} \alpha^{2} \leq \cdots \leq V$.
(c) Suppose that r is a natural number and $\operatorname{Im} \alpha^{r}=\operatorname{Im} \alpha^{r+1}$. Show that $\operatorname{Im} \alpha^{t}=\operatorname{Im} \alpha^{r}$ for all natural numbers $t \geq r$.
(d) Let V be a vector space of dimension n. Suppose that $\alpha: V \longrightarrow V$ is a linear map such that $\alpha^{2}=0$ (the zero map). Show that the nullity ν_{α} satisfies $2 \nu_{\alpha} \geq n$.
(e) Suppose that there is a natural number m such that α^{m} is the zero map 0 . Prove that α^{n} is 0 .
3. Suppose that V is a vector space of dimension n and that $\alpha: V \longrightarrow V$ is a linear map. Suppose that α^{3} is 0 , the zero map. Show that $\nu_{\alpha} \geq n / 3$ where ν_{α} denotes the nullity of α. Hint: let $V_{0}=V, V_{1}=\operatorname{Im} \alpha$ and $V_{2}=\operatorname{Im} \alpha^{2}$. Let $\alpha_{1}: V \longrightarrow V_{1}$ and $\alpha_{2}: V_{1} \longrightarrow V_{2}$ be the maps defined by $\alpha_{i}(\mathbf{v})=\alpha(\mathbf{v})$ for all $\mathbf{v} \in V_{i-1}$. Deploy the rank nullity theorem.
4. Let V be a finite dimensional vector space, with W, X, Y and Z all subspaces of V.
(a) Show that

$$
\begin{aligned}
& \operatorname{dim}(X \cap Y)+\operatorname{dim}((X+Y) \cap Z) \\
= & \operatorname{dim}(Y \cap Z)+\operatorname{dim}((Y+Z) \cap X) \\
= & \operatorname{dim}(Z \cap X)+\operatorname{dim}((Z+X) \cap Y) .
\end{aligned}
$$

(b) Show that

$$
\begin{aligned}
& \operatorname{dim}(W \cap X)+\operatorname{dim}(Y \cap Z)+\operatorname{dim}((W+X) \cap(Y+Z)) \\
= & \operatorname{dim}(W \cap Y)+\operatorname{dim}(X \cap Z)+\operatorname{dim}((W+Y) \cap(X+Z)) \\
= & \operatorname{dim}(W \cap Z)+\operatorname{dim}(X \cap Y)+\operatorname{dim}((W+Z) \cap(X+Y))
\end{aligned}
$$

Hint: this question is not hard. You need an idea. Please do not start picking bases; that way madness lies.

