MA20008 Algebra 1, 2004, Sheet 6

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let V be a vector space of dimension n. Suppose that $\alpha: V \rightarrow V$ is a linear map. Show that the following are equivalent.
(a) α is injective.
(b) α is bijective.
(c) α is surjective.
(d) There is a basis $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of V such that $\alpha\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \alpha\left(\mathbf{v}_{\mathbf{n}}\right)$ is a basis of V.
(e) For every basis $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of V, the vectors $\alpha\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \alpha\left(\mathbf{v}_{\mathbf{n}}\right)$ also form a basis of V.

Hint: the rank-nullity theorem may be useful in places.
2. Suppose that

$$
X=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)
$$

is a $2 r$ by $2 r$ matrix built from the four r by r matrices A, B, C and the zero matrix 0 . Suppose that X has an inverse matrix. Describe that matrix in terms of A, B, C and 0 .
3. The matrix

$$
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has entries in the Field F_{7}, the integers modulo 7. Calculate
(a) F^{2}.
(b) F^{5}.
(c) F^{1000}.
(d)

$$
\sum_{i=0}^{999} F^{i}
$$

where F^{0} denotes the identity matrix.
4. The matrix

$$
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has entries in \mathbb{Q}, Let I denote the 2 by 2 identity matrix. Show that I and F are linearly independent but that I, F and F^{2} are linearly dependent elements of the vector space of 2 by 2 matrices with rational entries (with scalars in \mathbb{Q}).
5. Suppose that $\alpha, \beta: V \longrightarrow V$ are a pair of commuting linear maps.
(a) Prove that both $\operatorname{Im} \alpha$ and Ker α are β-invariant spaces.
(b) Prove that $\operatorname{Im} \alpha+\operatorname{Im} \beta$ is both α-invariant and β-invariant.
(c) Prove that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta$ is both α-invariant and β-invariant.

