MA20008 Algebra 1, 2004, Sheet 6

Geoff Smith, http://www.bath.ac.uk/~masgcs

- 1. Let V be a vector space of dimension n. Suppose that $\alpha : V \to V$ is a linear map. Show that the following are equivalent.
 - (a) α is injective.
 - (b) α is bijective.
 - (c) α is surjective.
 - (d) There is a basis $\mathbf{v_1}, \ldots, \mathbf{v_n}$ of V such that $\alpha(\mathbf{v_1}), \ldots, \alpha(\mathbf{v_n})$ is a basis of V.
 - (e) For every basis $\mathbf{v_1}, \ldots, \mathbf{v_n}$ of V, the vectors $\alpha(\mathbf{v_1}), \ldots, \alpha(\mathbf{v_n})$ also form a basis of V.

Hint: the rank-nullity theorem may be useful in places.

2. Suppose that

$$X = \left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right)$$

is a 2r by 2r matrix built from the four r by r matrices A, B, C and the zero matrix 0. Suppose that X has an inverse matrix. Describe that matrix in terms of A, B, C and 0.

3. The matrix

$$F = \left(\begin{array}{cc} 1 & 1\\ 1 & 0 \end{array}\right)$$

has entries in the Field F_7 , the integers modulo 7. Calculate

- (a) F^2 .
- (b) F^5 .
- (c) F^{1000} .

(d)

$$\sum_{i=0}^{999} F^i$$

where F^0 denotes the identity matrix.

4. The matrix

$$F = \left(\begin{array}{rr} 1 & 1\\ 1 & 0 \end{array}\right)$$

has entries in \mathbb{Q} , Let I denote the 2 by 2 identity matrix. Show that I and F are linearly independent but that I, F and F^2 are linearly dependent elements of the vector space of 2 by 2 matrices with rational entries (with scalars in \mathbb{Q}).

- 5. Suppose that $\alpha, \beta: V \longrightarrow V$ are a pair of commuting linear maps.
 - (a) Prove that both Im α and Ker α are β -invariant spaces.
 - (b) Prove that Im α + Im β is both α -invariant and β -invariant.
 - (c) Prove that Im $\alpha \cap \text{Im } \beta$ is both α -invariant and β -invariant.