MA20008 Algebra 1, 2004, Sheet 8

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Suppose that V is a finite dimensional vector space over a field F, and that $\alpha: V \longrightarrow V$ is a linear map. Suppose that $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{n}}$ is a basis of V such that each subspace $\left\langle\mathbf{e}_{\mathbf{i}}\right\rangle$ is α-invariant. Prove that the matrix of α with respect to this basis (in both domain and codomain) is diagonal.
2. We consider the ordinary inner product on \mathbb{R}^{2} or \mathbb{R}^{3} defined as the "dot" or "scalar" product. Let the vertices of triangle $A B C$ have position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} respectively.
(a) Show that the point G with position vector $\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c})$ lies on each median (a line joining a vertex to the midpoint of the opposite side). Conclude that the medians are concurrent (at a point G which is called the centroid of $\triangle A B C)$.
(b) The altitude of $\triangle A B C$ through A is the straight line through A which is perpendicular to $B C$. Show that a point P is on this altitude if and only if the position vector \mathbf{r} of P satisfies $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{b}-\mathbf{c})=0$.
(c) Now we insist that the origin is the circumcentre O of $\triangle A B C$. Thus there is a quantity R such that

$$
\mathbf{a} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{b}=\mathbf{c} \cdot \mathbf{c}=R^{2} .
$$

Show that the point H with position vector $\mathbf{a}+\mathbf{b}+\mathbf{c}$ is on all three altitudes. Deduce that the three altitudes of $\triangle A B C$ are concurrent at H. The point H is called the orthocentre of $\triangle A B C$.
(d) Deduce that the three points O, G and H are colinear, and that the distances are such that $|O H|=3|O G|$. The line through O and H is called the Euler line of $\triangle A B C$.
(e) Let L be the midpoint of $B C$ and M be the midpoint of $A H$. Let N be the midpoint of $L M$. Find the position vector of N (with the origin still at O).
(f) Deduce that N is the midpoint of $O H$ so that O, G, N, H are colinear and the ratios of lengths are

$$
|O G|:|G N|:|N H|=2: 1: 3 .
$$

(g) Show that $|L M|=R$.
(h) Deduce that the circle with centre N and radius $R / 2$ goes through the following nine interesting points: the midpoints of the sides of $\triangle A B C$, the feet of the altitudes of $\triangle A B C$ and the three points which are midway between H and each of the three vertices A, B and C. This is the 'nine-point circle' or 'Feuerbach circle'.
(a) Let $A B C D$ be a cyclic quadrilateral. A maltitude is a straight line through the midpoint of a side which perpendicular to the opposite side. Show that the four maltitudes are concurrent.
3. Suppose that V is an inner product space, with inner product denoted by \langle,$\rangle . Suppose that U$ and W are subspaces of V.
(a) Show that $(U+W)^{\perp}=(U \cup W)^{\perp}=U^{\perp} \cap W^{\perp}$.
(b) Suppose that $U \leq W$. Show that $W^{\perp} \leq U^{\perp}$.
4. Suppose that V is an inner product space of dimension n, and $\mathbf{0} \neq \mathbf{v} \in$ V. Prove that $\operatorname{dim}\left(\{\mathbf{v}\}^{\perp}\right)=n-1$.

