MA20008 Algebra 1, 2004, Sheet 9

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let U be the set of polynomials in the variable X with coefficients in \mathbb{R}. We define an inner product \langle,$\rangle on U$ via

$$
\langle f, h\rangle=\int_{0}^{1} f h d X
$$

Thus U is a vector space of \mathbb{R} in the natural way. Let V be the subspace of U consisting of polynomials of degree at most 3 . Given the basis $1, X, X^{2}, X^{3}$, run the Gram-Schmidt algorithm to produce an orthonormal basis of V.
2. Let V be an inner product space with orthonormal basis $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$. If the Gram-Schmidt algorithm is used to modify this basis, what is the output?
3. Let V be an inner product space with orthonormal basis $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$. We obtain another basis $\mathbf{v}_{\mathbf{n}}, \mathbf{v}_{\mathbf{n}-\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{1}}$ by reversing the order of the vectors. Run the Gram-Schmidt algorithm on each of these bases in turn. Is it true that the output orthonormal bases are the reverse of each other?
4. For $r=0,1,2$ define functions $f_{r}: \mathbb{R} \longrightarrow \mathbb{R}$ by $f_{r}: \theta \mapsto \cos r \theta$ for all real numbers θ. The collection of all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ has a natural vector space structure. Let V be the subspace spanned by f_{0}, f_{1}, f_{2}. Define an inner product on V via $\langle f, h\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f h d \theta$. Run Gram-Schmidt to obtain an orthonormal basis of V.
5. Suppose that $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{n}}$ is an orthonormal basis of the inner product space V. Let $U_{r}=\left\langle\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathbf{r}}\right\rangle$. Suppose that $\mathbf{v} \in V$. Show that among all vectors $\mathbf{x} \in U_{r}$, the one which minimizes $\|\mathbf{v}-\mathbf{x}\|$ is $\sum_{i=1}^{r}\left\langle\mathbf{v}, \mathbf{e}_{\mathbf{i}}\right\rangle \mathbf{e}_{\mathbf{i}}$.
6. Suppose that V is an inner product space of dimension n, and α : $V \longrightarrow V$ is a linear map. Suppose that α carries some orthonormal basis to an orthonormal basis. Show that α carries each orthonormal basis to an orthonormal basis.

