Fields and Vector Spaces

A *Field* F is a set equipped with binary operations + and \times satisfying various axioms. We usually suppress \times and denote it by juxtaposition. We use brackets to indicate the priority of operations in an expression, and we omit them according to the usual conventions. The field axioms are as follows.

- 1. + is closed so $a + b \in F$ whenever $a, b \in F$.
- 2. + is associative so (a + b) + c = a + (b + c) whenever $a, b, c \in F$.
- 3. + has a distinguished identity element 0 which acts as a two-sided identity, so

0 + a = a = a + 0 whenever $a \in F$.

4. + admits of inverses, so for each $a \in F$ there is a unique element $-a \in F$ such that

$$a + (-a) = 0 = (-a) + a.$$

- 5. + is commutative so a + b = b + a whenever $a, b \in F$.
- 6. \times is *closed* so $ab \in F$ whenever $a, b \in F$.
- 7. × is commutative so ab = ba whenever $a, b \in F$.
- 8. × is associative so (ab)c = a(bc) whenever $a, b, c \in F$.
- 9. \times has a distinguished identity element 1 which acts as a two-sided identity, so

$$1a = a = a1$$
 whenever $a \in F$.

- 10. Non-zero elements have multiplicative inverses. To be explicit: if $a \in F$ and $a \neq 0$, then there is a unique $a^{-1} \in F$ such that $aa^{-1} = a^{-1}a = 1$.
- 11. Multiplication distributes over addition, so

$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$

whenever $a, b, c \in F$.

12. $0 \neq 1$.

A vector space V over a field F is a set V equipped with a binary operation +, and a multiplication $\cdot : F \times V \to V$ (often denoted by juxtaposition) such that the following axioms are satisfied.

- 1. + is closed so $u + v \in V$ whenever $u, v \in V$.
- 2. + is associative so (u + v) + w = u + (v + w) whenever $u, v, w \in V$.
- 3. + has a distinguished identity element ${\bf 0}$ which acts as a two-sided identity, so

$$\mathbf{0} + u = u = u + \mathbf{0}$$
 whenever $u \in V$.

4. + admits of inverses, so for each $u \in V$ there is a unique element $-u \in V$ such that

$$u + (-u) = \mathbf{0} = (-u) + u.$$

- 5. + is commutative so u + v = v + u whenever $u, v \in V$.
- 6. \cdot distributes over addition in V so

$$a \cdot (u+v) = a \cdot u + a \cdot v$$
 whenever $a \in F, u, v \in V$.

7. \cdot distributes over addition in F so

$$(a+b) \cdot u = a \cdot u + b \cdot u$$
 whenever $a, b \in F, u \in V$.

8. \cdot enjoys a form of associativity whereby

$$(ab) \cdot u = a \cdot (b \cdot u)$$

whenever $a, b \in F$ and $u \in V$. Here the product ab is a product in F.

9. $1 \cdot u = u$ whenever $u \in V$.