MATH30038 Advanced Group Theory Exam Solutions 2000

© G.C.Smith 2003

1. Let A_{n} and S_{n} denote respectively the alternating and symmetric groups of degree n. Recall that S_{n} is the group of all permutations of $\Omega=$ $\{1,2, \ldots, n\}$ and A_{n} is the subroup of S_{n} consisting of the even permutations
(a) Suppose that G is a permutation group on Ω. What does it mean to say that G acts k-transitively on Ω
Solution Suppose that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct elements of Ω and that $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ are also distinct elements of Ω (but it may be that some elements of Ω appear in both lists). To say that G is k-transitive means that inevitably there must be $g \in G$ such that $\left(\alpha_{i}\right) g=\beta_{i}$ for every $i=1,2, \ldots, k$.
(b) Prove that if $n \geq 3$, then A_{n} acts $(n-2)$-transitively on Ω

Solution Clearly S_{n} acts n-transitively on Ω. If we are confronted with two lists $\alpha_{1}, \ldots, \alpha_{n-2}$ and $\beta_{1}, \ldots, \beta_{n-2}$ each without repetitions, let a, b be the missing elemenst from the first list and $c=(a) g, d=(b) g$ be the missing elements of the second list. Both g and $g \circ(c, d)$ have the same effect on $\alpha_{1}, \ldots, \alpha_{n-2}$ and one of g and $g \circ(c, d)$ is an even permutation. Thus A_{n} acts $n-2$ transitively on Ω.
(c) Prove that if $n \geq 4$, then A_{n} has trivial centre.

Solution Pending.
(d) Suppose that $H \unlhd S_{n}$ and $\left|S_{n}: H\right|=2$. Show that $H=A_{n}$.

Solution Since H has index 2, it must be normal in S_{n}. If $t=$ (x, y) and $t \in H$, then the fact that $H \unlhd S_{n}$ forces $t^{g} \in H$ for all $g \in$
S_{n}. However, all transpositions in S_{n} are conjugate, and the group S_{n} is generated by transpositions. Thus $H=S_{n}$ which violates $\left|S_{n}: H\right|=2$. We conclude that H contains no transpositions. Now suppose that $x \in A_{n}$, so x is a product $t_{1} t_{2} \cdots t_{m}$ of an even number of transpositions. Now $H=H, H t_{1} \neq H, H t_{1} t_{2}=H$ etc. It follows that $H x=H$ so $x \in H$. Thus $A_{n} \leq H$, but both H and A_{n} have index 2 in S_{n} and so have the same order. Therefore $H=A_{n}$.
(e) Suppose that G is a simple group with $|G| \geq n!/ 2$. Moreover suppose that G has a subgroup K of index n, and that $n \geq 5$. Prove that G is isomorphic to A_{n}
Solution Let $\Omega=K \backslash G$ be the set of right cosets of K in G. Right multiplication yields a non-trivial action of G on Ω. This in turn yields a non-trivial homomorphism $\alpha: G \rightarrow \operatorname{Sym}(\Omega) \simeq S_{n}$. Here \simeq denotes an isomorphism. The simplicity of G forces the kernel to be 1 or G, but the homomorphism is non-trivial so the kernel is not G. Thus the homomorphism is injective (i,e, it is a monomorphism) and $G \simeq H=\operatorname{Im} \alpha \leq S_{n}$. Now $|G| \geq n!/ 2$ and so H has index 1 or 2 in S_{n}. However, S_{n} is not a simple group when $n \geq 3$ since A_{n} is a (normal) subgroup of index 2 . Thus $\left|S_{n}: H\right|=2$ and so by part (b) we have $A_{n}=H \simeq G$.
2. (a) Suppose that H, K are subgroups of the group G, and that $|G: H|$, $|G: K|$ are both finite. Prove that $|G: H \cap K|$ is finite.
Solution Let $L=H \cap K$. Choose a right transversal T for L in H. Now if t_{1}, t_{2} are distinct elements of T, then $K t_{1} \neq K t_{2}$, else $t_{1} t_{2}^{-1} \in H \cap K=L$ and then $L t_{1}=L t_{2}$ which is not the case. Thus $|T| \leq|G: K|<\infty$. Now $|G: L|=|G: H| \cdot|H: L|$ is finite.
(b) Suppose that $H_{i}(i=1, \ldots, n)$ are subgroups of a group G, and that each H_{i} has finite index in G. Prove that $L=\operatorname{cap}_{i} H_{i}$ has finite index in G.
Solution We use induction on n. The result is trivially true for $n=1$ and the case $n=2$ is disposed of by part (a). Thus we may suppose that $n \geq 3$. Let $L_{1}=\cap_{i=1}^{n-1}$ so by induction $\left|G: L_{1}\right|<\infty$. Now $L=L_{1} \cap H_{n}$ and the case $n=2$ applies, so $|G: L|$ is finite.
(c) Let G be a finitely generated group in which all conjugacy classes are finite. Let $Z(G)$ denote the centre of G. Prove that $|G: Z(G)|$
is finite.
Solution Let G be generated by g_{1}, \ldots, g_{k}. Now $Z(G)=\cap_{i=1}^{k} C_{G}\left(g_{i}\right)$ but each conjugacy class is finite so for every i we have $\left|G: C_{G}\left(g_{i}\right)\right|$ is finite. Now apply part (b) to deduce that $|G: Z(G)|$ is finite.
(d) Let M be the restricted direct product of countably many ciopies of the symmetric group S_{3}. Thus the elements of M are infiniute sequences of elements of S_{3} in which all except for finitely many terms are 1, and the operation is termwise multiplication.
(i) Prove that M is not finitely generated.

Each $m=\left(m_{i}\right) \in M$ has the property that $m_{i}=1$ for all sufficiently large i. Any finite subset S of M will have the property that there is an integer $K=K(S)$ such that $s_{i}=1$ for all $i>K$. Then $\langle S\rangle$ will be finite. However, the group M is visibly infinite since it contains, for each natural number j, the sequence which is the identity element in all positions except position j, and the entry in position j is $(1,2)$. Thus M is not finitely generated.
(ii) Prove that the conjugacy classes of M are finite.

Solution If $m=\left(m_{i}\right) \in M$, then $m_{i}=1$ for all $i>K$ for some integer K. The same will be true for all conjugates of m, but there are only finitely many elements of M which satisfy the given condition. Thus each conjugacy class of M is finite.
(iii) Prove that $|M: Z(M)|$ is infinite.

Solution We will show that $Z(M)=1$ which, since M is an infinite group, will do the trick. For each natural number i let $\theta_{i} \in M$ have each entry 1 , except for position i where the entry is $(1,2)$. Let φ_{i} be definied similarly except that the entry in position i is $(1,3)$. Now if $z=\left(z_{i}\right) \in Z(M)$ then $z_{i} \in S_{3}$ must commute with both $(1,2)$ and $(1,3)$ and so must be 1 . Since each entry of z is $1, z$ must ne the identity element of M.
3. Let G be a group and suppose that $x, y \in G$. Define $[x, y]$ as a piece of notation for $x^{-1} y^{-1} x y$.
(a) Show that if $a, b \in G$, then $[a, b]=1$ if and only if $a b=b a$.

Solution $a^{-1} b^{-1} a b=1$ iff $b a a^{-1} b^{-1} a b=b a$ iff $a b=b a$.
(b) Prove that $[x y, z]=[x, z]^{y}[y, z]$ for all $x, y, z \in G$.

Solution $[x, z]^{y}[y, z]=y^{-1} x^{-1} z^{-1} x z y y^{-1} z^{-1} y z=(x y)^{-1} z^{-1}(x y) z=$ $[x y, z]$.
(c) Suppose that $N \unlhd G$, and that G / N is abelian. Prove that $[x, y] \in$ N for every $x, y \in G$.
Solution $N=[x N, y N]=[x, y] N$ so $[x, y] \in N$.
(d) Let $Z(G)$ denote the centre of G. Suppose that $G / Z(G)$ is abelian. For each $g \in G$ define a map $\psi_{g}: G \longrightarrow G$ by $\psi_{g}: x \mapsto[x, g]$. Prove that each ψ_{g} is a homomorphism.
Solution Suppose that $x, y \in G$, then $(x y) \psi_{g}=[x y, g]=$ $[x, g]^{y}[y, g]$ by part (b), and since $G / Z(G)$ is abelian, then part (c) applies and $[x, g] \in Z(G)$ so $[x, g]^{y}=[x, g]$. Thus $(x y) \psi_{g}=$ $(x) \psi_{g} \cdot(y) \psi_{g}$ so $\psi(g)$ is a homomorphism as required.
(e) In the set up described in part (d), suppose that $x^{m}=1$ for every $m \in Z(G)$. Prove that $y^{m} \in Z(G)$ for every $y \in G$.
Solution Suppose that $y, g \in G$, then $(y) \psi_{g} \in Z(G)$ so $(y) \psi_{g}^{m}=$ 1. Now ψ_{g} is a homomorphism so $\left(y^{m}\right) \psi_{g}=1$. Thus $\left[y^{m}, g\right]=1$ for every $g \in G$ so (by part (a)) $y^{m} \in Z(G)$.
4. (a) State the counting principle sometimes incorrectly attributed to William Burnside.
Solution Let the finite group G act on the finite set Ω, then the number t of orbits of this action is given by the formula

$$
t=\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)| .
$$

(b) Suppose that G is a group and that $N \unlhd G$. For each $g \in G$, let $C_{G}(g)$ denote the centralizer in G of g. Also let $C_{N}(g)=$ $N \cap C_{G}(g)$. Prove that $C_{N}(g) \unlhd C_{G}(g)$ and that $C_{G}(g) / C_{N}(g)$ is isomorphic to a subgroup of G / N. Clearly state any isomorphism theorem to which you appeal in the course of your argument.
Solution The second isomorphism theorem states taht if H, N are subgroups of G and that N is a normal subgroup, then $H N / N$ is isomorphic to $H /(H \cap N)$. Apply this with $H=C_{G}(g)$, so that $C_{G}(g) N / N \simeq C_{G}(g) / C_{N}(g)$ as required. Note that the normality of N ensures that $C_{G}(g) N$ is a subgroup of G which contains N.
(c) Suppose that G is a finite group and that $N \unlhd G$ with $|G: N|=$ n. Using the priciple mentioned in part (a), show that the total number of conjugacy classes in G is no more than n times the number of conjugacy classes of G which happen to be contained in N.
Solution Let G act on N by conjugation. Suppose that there are s orbits of this action, and that G has t conjugacy classes. The counting principle applies and we have

$$
s=\frac{1}{|G|} \sum_{g \in G}\left|C_{N}(g)\right|
$$

Now part (b) applies so that $\left|C_{G}(g): C_{N}(g)\right| \leq n$, so $\left|C_{N}(g)\right| \geq$ $\left|C_{G}(g)\right| / n$. Thus

$$
s \geq \frac{1}{|G|} \sum_{g \in G}\left|C_{G}(g)\right| / n=t / n
$$

Thus $t \leq n s$ as required.

