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1. Let A,, and S, denote respectively the alternating and symmetric groups
of degree n. Recall that S, is the group of all permutations of 2 =
{1,2,...,n} and A, is the subroup of S,, consisting of the even permu-
tations

(a)

Suppose that G is a permutation group on 2. What does it mean
to say that G acts k-transitively on 2

Solution Suppose that aq,as, ..., ar are distinct elements of €2
and that (1, 0s, ..., [k are also distinct elements of Q (but it may
be that some elements of 2 appear in both lists). To say that G is
k-transitive means that inevitably there must be g € G such that
(vi)g = B; for every 1 =1,2,... k.

Prove that if n > 3, then A, acts (n — 2)-transitively on Q
Solution Clearly S, acts n-transitively on . If we are con-
fronted with two lists aq,...,a,_2 and 3y, ..., 3,_2 each without
repetitions, let a,b be the missing elemenst from the first list and
¢ = (a)g, d = (b)g be the missing elements of the second list.
Both g and g o (¢, d) have the same effect on ay, ..., a,—o and one
of g and g o (¢,d) is an even permutation. Thus A, acts n — 2
transitively on €.

Prove that if n > 4, then A,, has trivial centre.
Solution Pending.

Suppose that H <.S,, and |S,, : H| = 2. Show that H = A,,.
Solution Since H has index 2, it must be normal in S,,. If t =
(z,y) and t € H, then the fact that H<S,, forcest? € H forall g €
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Sn. However, all transpositions in S,, are conjugate, and the group
Sy is generated by transpositions. Thus H = S,, which violates
|S, : H| = 2. We conclude that H contains no transpositions.
Now suppose that = € A,,, so x is a product tits---t,, of an even
number of transpositions. Now H = H, Ht, # H, Htito = H
etc. It follows that Hr = H sox € H. Thus A,, < H, but both H
and A,, have index 2 in .S,, and so have the same order. Therefore
H=A,.

Suppose that G is a simple group with |G| > n!/2. Moreover
suppose that G has a subgroup K of index n, and that n > 5.
Prove that G is isomorphic to A,

Solution Let 2 = K\G be the set of right cosets of K in G.
Right multiplication yields a non-trivial action of G on 2. This in
turn yields a non-trivial homomorphism « : G — Sym(Q2) ~ S,,.
Here ~ denotes an isomorphism. The simplicity of G forces the
kernel to be 1 or GG, but the homomorphism is non-trivial so the
kernel is not G. Thus the homomorphism is injective (i,e, it is a
monomorphism) and G ~ H = Im o < S,,. Now |G| > n!/2 and
so H has index 1 or 2 in S,,. However, S, is not a simple group
when n > 3 since A, is a (normal) subgroup of index 2. Thus
|Sy, : H| =2 and so by part (b) we have A, = H ~ G.

Suppose that H, K are subgroups of the group G, and that |G : H|,
|G : K| are both finite. Prove that |G : H N K| is finite.

Solution Let L = H N K. Choose a right transversal T" for L in
H. Now if t1,t5 are distinct elements of T', then Kt # Kto, else
t1t2_1 € HN K = L and then Lt; = Lt, which is not the case.
Thus |T| < |G : K| <oo.Now |G : L| = |G : H|-|H : L] is finite.

Suppose that H; (i = 1,...,n) are subgroups of a group G, and
that each H; has finite index in G. Prove that L = cap;H; has
finite index in G.

Solution We use induction on n. The result is trivially true for
n = 1 and the case n = 2 is disposed of by part (a). Thus we may
suppose that n > 3. Let L; = N} so by induction |G : L] < co.
Now L = Ly N H,, and the case n = 2 applies, so |G : L] is finite.

Let G be a finitely generated group in which all conjugacy classes
are finite. Let Z(G) denote the centre of G. Prove that |G : Z(G)|



18 finite.

Solution Let G be generated by g1, . .., gr. Now Z(G) = N Ca(g;)
but each conjugacy class is finite so for every ¢ we have |G : Ce(g;)|

is finite. Now apply part (b) to deduce that |G : Z(G)| is finite.

(d) Let M be the restricted direct product of countably many ciopies
of the symmetric group S3. Thus the elements of M are infiniute
sequences of elements of S35 in which all except for finitely many
terms are 1, and the operation is termwise multiplication.

(i) Prove that M is not finitely generated.
Each m = (m;) € M has the property that m; = 1 for all
sufficiently large 7. Any finite subset S of M will have the
property that there is an integer K = K () such that s; = 1
for all ¢ > K. Then (S) will be finite. However, the group M
is visibly infinite since it contains, for each natural number
7, the sequence which is the identity element in all positions
except position j, and the entry in position j is (1,2). Thus
M is not finitely generated.
(ii) Prove that the conjugacy classes of M are finite.
Solution If m = (m;) € M, then m; = 1 for all i > K for
some integer K. The same will be true for all conjugates of m,
but there are only finitely many elements of M which satisfy
the given condition. Thus each conjugacy class of M is finite.
(iii) Prove that |M : Z(M)| is infinite.

Solution We will show that Z(M) = 1 which, since M is
an infinite group, will do the trick. For each natural number
1 let #; € M have each entry 1, except for position ¢ where
the entry is (1,2). Let ¢; be definied similarly except that the
entry in position 7 is (1,3). Now if z = (z;) € Z(M) then
z; € S3 must commute with both (1,2) and (1, 3) and so must

be 1. Since each entry of z is 1, z must ne the identity element
of M.

3. Let G be a group and suppose that x,y € G. Define [x,y] as a piece of
notation for =ty tay.

(a) Show that if a,b € G, then [a,b] =1 if and only if ab = ba.
Solution a~!'b~'ab =1 iff baa'b~tab = ba iff ab = ba.



(b) Prove that [xy, z] = [z, 2|Y[y, 2| for all z,y,z € G.
Solution [z, z]Y[y, 2] = y o~z wzyy 27 yz = (2y) e (ay)2 =
[y, 2.

(¢) Suppose that N <G, and that G/N is abelian. Prove that [x,y] €

N for every x,y € G.
Solution N = [xN,yN] = [z,y|N so [z,y] € N.

(d) Let Z(QG) denote the centre of G. Suppose that G/Z(Q) is abelian.

For each g € G define a map v, : G — G by ¢, : v — [x,9].
Prove that each 14 is a homomorphism.
Solution Suppose that z,y € G, then (zy)y, = [zy,g] =
[z, 9]y, g] by part (b), and since G/Z(G) is abelian, then part
(c) applies and [z, g] € Z(G) so [z,g)Y = [z,g]. Thus (zy)y, =
(2)y - (y)1y so ¥(g) is a homomorphism as required.

(e) In the set up described in part (d), suppose that x™ =1 for every
m € Z(G). Prove that y™ € Z(G) for every y € G.
Solution Suppose that y,g € G, then (y)y, € Z(G) so (y)¢y* =
1. Now %, is a homomorphism so (y™)y, = 1. Thus [y™,¢] =1
for every g € G so (by part (a)) y™ € Z(G).

(a) State the counting principle sometimes incorrectly attributed to
William Burnside.
Solution Let the finite group G act on the finite set €2, then the
number t of orbits of this action is given by the formula

1 :
t= €] > IFix(g)|.

geG

(b) Suppose that G is a group and that N < G. For each g € G,
let Ci(g) denote the centralizer in G of g. Also let Cn(g) =
NN Ceq(g). Prove that Cn(g) 9 Ca(g) and that Ce(g)/Cn(g) is
isomorphic to a subgroup of G/N. Clearly state any isomorphism
theorem to which you appeal in the course of your argument.
Solution The second isomorphism theorem states taht if H, N
are subgroups of G and that N is a normal subgroup, then HN/N
is isomorphic to H/(H N N). Apply this with H = Cg(g), so that
Ca(9)N/N ~ Cs(g9)/Cn(g) as required. Note that the normality
of N ensures that C(g)N is a subgroup of G which contains N.



(¢) Suppose that G is a finite group and that N < G with |G : N| =
n. Using the priciple mentioned in part (a), show that the total
number of conjugacy classes in G is no more than n times the
number of conjugacy classes of G which happen to be contained in
N.

Solution Let G act on N by conjugation. Suppose that there are
s orbits of this action, and that G has ¢t conjugacy classes. The
counting principle applies and we have

1
8§ = ?Z |Cn(9)]-
Gl =
Now part (b) applies so that |Ca(g) : Cn(g9)] < n, so |Cn(g)| >
|Cc(g)|/n. Thus
1
52 13 |Calg)l/n = t/n.
Gl 2=

Thus t < ns as required.



