
MATH30038 Advanced Group Theory Exam
Solutions 2000

c©G.C.Smith 2003

1. Let An and Sn denote respectively the alternating and symmetric groups
of degree n. Recall that Sn is the group of all permutations of Ω =
{1, 2, . . . , n} and An is the subroup of Sn consisting of the even permu-
tations

(a) Suppose that G is a permutation group on Ω. What does it mean
to say that G acts k-transitively on Ω
Solution Suppose that α1, α2, . . . , αk are distinct elements of Ω
and that β1, β2, . . . , βk are also distinct elements of Ω (but it may
be that some elements of Ω appear in both lists). To say that G is
k-transitive means that inevitably there must be g ∈ G such that
(αi)g = βi for every i = 1, 2, . . . , k.

(b) Prove that if n ≥ 3, then An acts (n − 2)-transitively on Ω
Solution Clearly Sn acts n-transitively on Ω. If we are con-
fronted with two lists α1, . . . , αn−2 and β1, . . . , βn−2 each without
repetitions, let a, b be the missing elemenst from the first list and
c = (a)g, d = (b)g be the missing elements of the second list.
Both g and g ◦ (c, d) have the same effect on α1, . . . , αn−2 and one
of g and g ◦ (c, d) is an even permutation. Thus An acts n − 2
transitively on Ω.

(c) Prove that if n ≥ 4, then An has trivial centre.
Solution Pending.

(d) Suppose that H � Sn and |Sn : H| = 2. Show that H = An.
Solution Since H has index 2, it must be normal in Sn. If t =
(x, y) and t ∈ H, then the fact that H�Sn forces tg ∈ H for all g ∈
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Sn. However, all transpositions in Sn are conjugate, and the group
Sn is generated by transpositions. Thus H = Sn which violates
|Sn : H| = 2. We conclude that H contains no transpositions.
Now suppose that x ∈ An, so x is a product t1t2 · · · tm of an even
number of transpositions. Now H = H, Ht1 6= H, Ht1t2 = H
etc. It follows that Hx = H so x ∈ H. Thus An ≤ H, but both H
and An have index 2 in Sn and so have the same order. Therefore
H = An.

(e) Suppose that G is a simple group with |G| ≥ n!/2. Moreover
suppose that G has a subgroup K of index n, and that n ≥ 5.
Prove that G is isomorphic to An

Solution Let Ω = K\G be the set of right cosets of K in G.
Right multiplication yields a non-trivial action of G on Ω. This in
turn yields a non-trivial homomorphism α : G → Sym(Ω) ' Sn.
Here ' denotes an isomorphism. The simplicity of G forces the
kernel to be 1 or G, but the homomorphism is non-trivial so the
kernel is not G. Thus the homomorphism is injective (i,e, it is a
monomorphism) and G ' H = Im α ≤ Sn. Now |G| ≥ n!/2 and
so H has index 1 or 2 in Sn. However, Sn is not a simple group
when n ≥ 3 since An is a (normal) subgroup of index 2. Thus
|Sn : H| = 2 and so by part (b) we have An = H ' G.

2. (a) Suppose that H,K are subgroups of the group G, and that |G : H|,
|G : K| are both finite. Prove that |G : H ∩K| is finite.
Solution Let L = H ∩K. Choose a right transversal T for L in
H. Now if t1, t2 are distinct elements of T , then Kt1 6= Kt2, else
t1t

−1
2 ∈ H ∩ K = L and then Lt1 = Lt2 which is not the case.

Thus |T | ≤ |G : K| <∞. Now |G : L| = |G : H| · |H : L| is finite.

(b) Suppose that Hi (i = 1, . . . , n) are subgroups of a group G, and
that each Hi has finite index in G. Prove that L = capiHi has
finite index in G.
Solution We use induction on n. The result is trivially true for
n = 1 and the case n = 2 is disposed of by part (a). Thus we may
suppose that n ≥ 3. Let L1 = ∩n−1

i=1 so by induction |G : L1| <∞.
Now L = L1 ∩Hn and the case n = 2 applies, so |G : L| is finite.

(c) Let G be a finitely generated group in which all conjugacy classes
are finite. Let Z(G) denote the centre of G. Prove that |G : Z(G)|
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is finite.
Solution LetG be generated by g1, . . . , gk. NowZ(G) = ∩k

i=1CG(gi)
but each conjugacy class is finite so for every i we have |G : CG(gi)|
is finite. Now apply part (b) to deduce that |G : Z(G)| is finite.

(d) Let M be the restricted direct product of countably many ciopies
of the symmetric group S3. Thus the elements of M are infiniute
sequences of elements of S3 in which all except for finitely many
terms are 1, and the operation is termwise multiplication.

(i) Prove that M is not finitely generated.
Each m = (mi) ∈ M has the property that mi = 1 for all
sufficiently large i. Any finite subset S of M will have the
property that there is an integer K = K(S) such that si = 1
for all i > K. Then 〈S〉 will be finite. However, the group M
is visibly infinite since it contains, for each natural number
j, the sequence which is the identity element in all positions
except position j, and the entry in position j is (1, 2). Thus
M is not finitely generated.

(ii) Prove that the conjugacy classes of M are finite.
Solution If m = (mi) ∈ M , then mi = 1 for all i > K for
some integerK. The same will be true for all conjugates of m,
but there are only finitely many elements of M which satisfy
the given condition. Thus each conjugacy class of M is finite.

(iii) Prove that |M : Z(M)| is infinite.
Solution We will show that Z(M) = 1 which, since M is
an infinite group, will do the trick. For each natural number
i let θi ∈ M have each entry 1, except for position i where
the entry is (1,2). Let ϕi be definied similarly except that the
entry in position i is (1, 3). Now if z = (zi) ∈ Z(M) then
zi ∈ S3 must commute with both (1, 2) and (1, 3) and so must
be 1. Since each entry of z is 1, z must ne the identity element
of M .

3. Let G be a group and suppose that x, y ∈ G. Define [x, y] as a piece of
notation for x−1y−1xy.

(a) Show that if a, b ∈ G, then [a, b] = 1 if and only if ab = ba.
Solution a−1b−1ab = 1 iff baa−1b−1ab = ba iff ab = ba.
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(b) Prove that [xy, z] = [x, z]y[y, z] for all x, y, z ∈ G.
Solution [x, z]y[y, z] = y−1x−1z−1xzyy−1z−1yz = (xy)−1z−1(xy)z =
[xy, z].

(c) Suppose that N �G, and that G/N is abelian. Prove that [x, y] ∈
N for every x, y ∈ G.
Solution N = [xN, yN ] = [x, y]N so [x, y] ∈ N.

(d) Let Z(G) denote the centre of G. Suppose that G/Z(G) is abelian.
For each g ∈ G define a map ψg : G −→ G by ψg : x 7→ [x, g].
Prove that each ψg is a homomorphism.
Solution Suppose that x, y ∈ G, then (xy)ψg = [xy, g] =
[x, g]y[y, g] by part (b), and since G/Z(G) is abelian, then part
(c) applies and [x, g] ∈ Z(G) so [x, g]y = [x, g]. Thus (xy)ψg =
(x)ψg · (y)ψg so ψ(g) is a homomorphism as required.

(e) In the set up described in part (d), suppose that xm = 1 for every
m ∈ Z(G). Prove that ym ∈ Z(G) for every y ∈ G.
Solution Suppose that y, g ∈ G, then (y)ψg ∈ Z(G) so (y)ψm

g =
1. Now ψg is a homomorphism so (ym)ψg = 1. Thus [ym, g] = 1
for every g ∈ G so (by part (a)) ym ∈ Z(G).

4. (a) State the counting principle sometimes incorrectly attributed to
William Burnside.
Solution Let the finite group G act on the finite set Ω, then the
number t of orbits of this action is given by the formula

t =
1

|G|
∑

g∈G

|Fix(g)|.

(b) Suppose that G is a group and that N � G. For each g ∈ G,
let CG(g) denote the centralizer in G of g. Also let CN (g) =
N ∩ CG(g). Prove that CN(g) � CG(g) and that CG(g)/CN (g) is
isomorphic to a subgroup of G/N . Clearly state any isomorphism
theorem to which you appeal in the course of your argument.
Solution The second isomorphism theorem states taht if H,N
are subgroups of G and that N is a normal subgroup, then HN/N
is isomorphic to H/(H ∩N). Apply this with H = CG(g), so that
CG(g)N/N ' CG(g)/CN (g) as required. Note that the normality
of N ensures that CG(g)N is a subgroup of G which contains N .
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(c) Suppose that G is a finite group and that N � G with |G : N | =
n. Using the priciple mentioned in part (a), show that the total
number of conjugacy classes in G is no more than n times the
number of conjugacy classes of G which happen to be contained in
N .
Solution Let G act on N by conjugation. Suppose that there are
s orbits of this action, and that G has t conjugacy classes. The
counting principle applies and we have

s =
1

|G|
∑

g∈G

|CN (g)|.

Now part (b) applies so that |CG(g) : CN(g)| ≤ n, so |CN(g)| ≥
|CG(g)|/n. Thus

s ≥ 1

|G|
∑

g∈G

|CG(g)|/n = t/n.

Thus t ≤ ns as required.
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