MATH30038 Advanced Group Theory Exam Solutions 2000

©G.C.Smith 2003

- 1. Let A_n and S_n denote respectively the alternating and symmetric groups of degree n. Recall that S_n is the group of all permutations of $\Omega =$ $\{1, 2, ..., n\}$ and A_n is the subroup of S_n consisting of the even permutations
 - (a) Suppose that G is a permutation group on Ω . What does it mean to say that G acts k-transitively on Ω Solution Suppose that $\alpha_1, \alpha_2, \ldots, \alpha_k$ are distinct elements of Ω and that $\beta_1, \beta_2, \ldots, \beta_k$ are also distinct elements of Ω (but it may be that some elements of Ω appear in both lists). To say that G is k-transitive means that inevitably there must be $g \in G$ such that $(\alpha_i)g = \beta_i$ for every $i = 1, 2, \ldots, k$.
 - (b) Prove that if n ≥ 3, then A_n acts (n − 2)-transitively on Ω Solution Clearly S_n acts n-transitively on Ω. If we are confronted with two lists α₁,..., α_{n-2} and β₁,..., β_{n-2} each without repetitions, let a, b be the missing elements from the first list and c = (a)g, d = (b)g be the missing elements of the second list. Both g and g ∘ (c, d) have the same effect on α₁,..., α_{n-2} and one of g and g ∘ (c, d) is an even permutation. Thus A_n acts n − 2 transitively on Ω.
 - (c) Prove that if $n \ge 4$, then A_n has trivial centre. Solution Pending.
 - (d) Suppose that $H \leq S_n$ and $|S_n : H| = 2$. Show that $H = A_n$. Solution Since H has index 2, it must be normal in S_n . If t = (x, y) and $t \in H$, then the fact that $H \leq S_n$ forces $t^g \in H$ for all $g \in$

 S_n . However, all transpositions in S_n are conjugate, and the group S_n is generated by transpositions. Thus $H = S_n$ which violates $|S_n : H| = 2$. We conclude that H contains no transpositions. Now suppose that $x \in A_n$, so x is a product $t_1 t_2 \cdots t_m$ of an even number of transpositions. Now H = H, $Ht_1 \neq H$, $Ht_1 t_2 = H$ etc. It follows that Hx = H so $x \in H$. Thus $A_n \leq H$, but both H and A_n have index 2 in S_n and so have the same order. Therefore $H = A_n$.

(e) Suppose that G is a simple group with $|G| \ge n!/2$. Moreover suppose that G has a subgroup K of index n, and that $n \ge 5$. Prove that G is isomorphic to A_n

Solution Let $\Omega = K \setminus G$ be the set of right cosets of K in G. Right multiplication yields a non-trivial action of G on Ω . This in turn yields a non-trivial homomorphism $\alpha : G \to \text{Sym}(\Omega) \simeq S_n$. Here \simeq denotes an isomorphism. The simplicity of G forces the kernel to be 1 or G, but the homomorphism is non-trivial so the kernel is not G. Thus the homomorphism is injective (i,e, it is a monomorphism) and $G \simeq H = \text{Im } \alpha \leq S_n$. Now $|G| \geq n!/2$ and so H has index 1 or 2 in S_n . However, S_n is not a simple group when $n \geq 3$ since A_n is a (normal) subgroup of index 2. Thus $|S_n : H| = 2$ and so by part (b) we have $A_n = H \simeq G$.

- 2. (a) Suppose that H, K are subgroups of the group G, and that |G : H|, |G : K| are both finite. Prove that $|G : H \cap K|$ is finite. **Solution** Let $L = H \cap K$. Choose a right transversal T for L in H. Now if t_1, t_2 are distinct elements of T, then $Kt_1 \neq Kt_2$, else $t_1t_2^{-1} \in H \cap K = L$ and then $Lt_1 = Lt_2$ which is not the case. Thus $|T| \leq |G : K| < \infty$. Now $|G : L| = |G : H| \cdot |H : L|$ is finite.
 - (b) Suppose that H_i (i = 1,...,n) are subgroups of a group G, and that each H_i has finite index in G. Prove that L = cap_iH_i has finite index in G.
 Solution We use induction on n. The result is trivially true for n = 1 and the case n = 2 is disposed of by part (a). Thus we may suppose that n ≥ 3. Let L₁ = ∩_{i=1}ⁿ⁻¹ so by induction |G : L₁| < ∞. Now L = L₁ ∩ H_n and the case n = 2 applies, so |G : L| is finite.
 - (c) Let G be a finitely generated group in which all conjugacy classes are finite. Let Z(G) denote the centre of G. Prove that |G : Z(G)|

is finite.

Solution Let G be generated by g_1, \ldots, g_k . Now $Z(G) = \bigcap_{i=1}^k C_G(g_i)$ but each conjugacy class is finite so for every i we have $|G : C_G(g_i)|$ is finite. Now apply part (b) to deduce that |G : Z(G)| is finite.

- (d) Let M be the restricted direct product of countably many ciopies of the symmetric group S_3 . Thus the elements of M are infinite sequences of elements of S_3 in which all except for finitely many terms are 1, and the operation is termwise multiplication.
 - (i) Prove that M is not finitely generated.
 - Each $m = (m_i) \in M$ has the property that $m_i = 1$ for all sufficiently large *i*. Any finite subset *S* of *M* will have the property that there is an integer K = K(S) such that $s_i = 1$ for all i > K. Then $\langle S \rangle$ will be finite. However, the group *M* is visibly infinite since it contains, for each natural number *j*, the sequence which is the identity element in all positions except position *j*, and the entry in position *j* is (1,2). Thus *M* is not finitely generated.
 - (ii) Prove that the conjugacy classes of M are finite. Solution If $m = (m_i) \in M$, then $m_i = 1$ for all i > K for some integer K. The same will be true for all conjugates of m, but there are only finitely many elements of M which satisfy the given condition. Thus each conjugacy class of M is finite.
 - (iii) Prove that |M : Z(M)| is infinite. **Solution** We will show that Z(M) = 1 which, since M is an infinite group, will do the trick. For each natural number i let $\theta_i \in M$ have each entry 1, except for position i where the entry is (1,2). Let φ_i be defined similarly except that the entry in position i is (1,3). Now if $z = (z_i) \in Z(M)$ then $z_i \in S_3$ must commute with both (1,2) and (1,3) and so must be 1. Since each entry of z is 1, z must ne the identity element of M.
- 3. Let G be a group and suppose that $x, y \in G$. Define [x, y] as a piece of notation for $x^{-1}y^{-1}xy$.
 - (a) Show that if $a, b \in G$, then [a, b] = 1 if and only if ab = ba. Solution $a^{-1}b^{-1}ab = 1$ iff $baa^{-1}b^{-1}ab = ba$ iff ab = ba.

- (b) Prove that $[xy, z] = [x, z]^{y}[y, z]$ for all $x, y, z \in G$. Solution $[x, z]^{y}[y, z] = y^{-1}x^{-1}z^{-1}xzyy^{-1}z^{-1}yz = (xy)^{-1}z^{-1}(xy)z = [xy, z]$.
- (c) Suppose that $N \trianglelefteq G$, and that G/N is abelian. Prove that $[x, y] \in N$ for every $x, y \in G$. Solution N = [xN, yN] = [x, y]N so $[x, y] \in N$.
- (d) Let Z(G) denote the centre of G. Suppose that G/Z(G) is abelian. For each g ∈ G define a map ψ_g : G → G by ψ_g : x ↦ [x,g]. Prove that each ψ_g is a homomorphism.
 Solution Suppose that x, y ∈ G, then (xy)ψ_g = [xy,g] = [x,g]^y[y,g] by part (b), and since G/Z(G) is abelian, then part (c) applies and [x,g] ∈ Z(G) so [x,g]^y = [x,g]. Thus (xy)ψ_g = (x)ψ_g · (y)ψ_g so ψ(g) is a homomorphism as required.
- (e) In the set up described in part (d), suppose that x^m = 1 for every m ∈ Z(G). Prove that y^m ∈ Z(G) for every y ∈ G.
 Solution Suppose that y, g ∈ G, then (y)ψ_g ∈ Z(G) so (y)ψ_g^m = 1. Now ψ_g is a homomorphism so (y^m)ψ_g = 1. Thus [y^m, g] = 1 for every g ∈ G so (by part (a)) y^m ∈ Z(G).
- 4. (a) State the counting principle sometimes incorrectly attributed to William Burnside.

Solution Let the finite group G act on the finite set Ω , then the number t of orbits of this action is given by the formula

$$t = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|$$

(b) Suppose that G is a group and that N ≤ G. For each g ∈ G, let C_G(g) denote the centralizer in G of g. Also let C_N(g) = N ∩ C_G(g). Prove that C_N(g) ≤ C_G(g) and that C_G(g)/C_N(g) is isomorphic to a subgroup of G/N. Clearly state any isomorphism theorem to which you appeal in the course of your argument. Solution The second isomorphism theorem states that if H, N are subgroups of G and that N is a normal subgroup, then HN/N is isomorphic to H/(H ∩ N). Apply this with H = C_G(g), so that C_G(g)N/N ≃ C_G(g)/C_N(g) as required. Note that the normality of N ensures that C_G(g)N is a subgroup of G which contains N.

(c) Suppose that G is a finite group and that $N \leq G$ with |G:N| = n. Using the priciple mentioned in part (a), show that the total number of conjugacy classes in G is no more than n times the number of conjugacy classes of G which happen to be contained in N.

Solution Let G act on N by conjugation. Suppose that there are s orbits of this action, and that G has t conjugacy classes. The counting principle applies and we have

$$s = \frac{1}{|G|} \sum_{g \in G} |C_N(g)|.$$

Now part (b) applies so that $|C_G(g) : C_N(g)| \le n$, so $|C_N(g)| \ge |C_G(g)|/n$. Thus

$$s \ge \frac{1}{|G|} \sum_{g \in G} |C_G(g)|/n = t/n.$$

Thus $t \leq ns$ as required.