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1. For the purposes of this question, we define a Dihedral Group to be a
group D = 〈x, y〉 where x and y are distinct involutions.

(a) Classify all abelian dihedral groups.
Solution x and y are distinct elements of order 2. Let z = xy
which is clearly not an element of {1, x, y}. Now G = {1, x, y, z}
is closed under multiplication and z2 = 1 so it is also closed under
inversion. Thus G is a group of size 4, and has the following
multiplicative structure: the product of any pair of different non-
identity elements is the third non-identity element.

(b) Let z = xy.

(i) Show that zx = zy = z−1 and deduce that H = 〈z〉 is a normal
subgroup of D.
Solution zx = x−1xyx = yx = y−1x−1 = z−1. Also zy =
y−1xyy = y−1x−1 = z−1. Thus Hx ≤ H and Hy ≤ H. Each
of x and y is self-inverse so every g ∈ G is a word in x and y,
and therefore Hg ≤ H for every g ∈ G and therefore H �D.

(ii) Prove that xH = yH, and deduce that G/H is cyclic of order
1 or 2.
Solution z = xy ∈ H so xyH = H and therefore xxyH =
xH i.e. yH = xH. Every element of G/H is a word in xH
and yH and is therefore a power of xH. However x2H = H
and so G/H = H ∪ xH, so |G : H| = 2 or 1 (as xH 6= H or
xH = H).
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(iii) Prove that x 6∈ H, and deduce that G/H ' C2.
Solution If x ∈ H then x and z commute, so x and xz com-
mute. Thus x and y commute and we are in the configuration
dealt with in part (a), and in this case x 6∈ H which is absurd.
Thus x 6∈ H so xH 6= H and |G : H| = 2.

2. (a) Exhibit a non-abelian group with non-trivial centre.
Solution The dihedral group generated by two distinct involu-
tions with product of order 4. We can exhibit this group as a
subgroup of S4: G = 〈(1, 3), (1, 4)(2, 3)〉.

(b) Let Z(G) denote the centre of the group G. Show that if G/Z(G)
is a cyclic group, then G must be abelian.
Solution Suppose that G/Z(G) = 〈xZ(G)〉 so G = 〈x, Z(G)〉 is
abelian.

(c) Show that if G is a group such that Aut G is a cyclic group, then
G must be abelian.
Solution G/Z(G) ' Inn(G) ≤ Aut(G). A subgroup of a cyclic
group is necessarily cyclic, so G/Z(G) is cyclic and part (b) ap-
plies.

3. If A,B are groups, we let Hom(A,B) denote the set of homomorphisms
with domain A and codomain B.

(a) Explain what is meant be a finitely generated group.
Solution G is finitely generated means that there is a finite set
X such that 〈X〉 = G. Here 〈X〉 simultaneously denotes the
intersection of all subgroups of G wich contain X, and the set of
all words on letters from X and their inverses. These two notions
can be proved equivalent.

(b) Suppose that G is a finitely generated group, and that H is a finite
group. Show that Hom(G,H) is finite.
Solution Suppose that G is generated by the finite set X. If
f : G → H is a map, there are |H| possible images for each
x ∈ X. Given also that f is a homomorphism, the ‘words’ view
on generation shows that the image of every g ∈ G is determined
by the images of the elements of X. Thus Hom(G,H) has size at
most |H||X | and so is finite.
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(c) Exhibit a group G and a finite group H such that Hom(G,H) is
an infinite set (and make it clear why Hom(G,H) is infinite).
Solution Let G be the set of infinite sequences (xi) where each
xi is an element of H, a cyclic group of order 2. Composition in
G is defined termwise. For each j ∈ N we have a group homo-
morphism εj defined by (xi) 7→ xj. These maps are clearly group
homomorphisms. Moreover they are diferent maps. This is be-
cause if j 6= j′ are natural numbers, let y = (yi) ∈ G where yi = 1
if i 6= j and yj 6= 1. Now (y)εj = yj 6= 1 = (y)εj′.

(d) Give an example of a subgroup H of a finitely generated group G
where H is not finitely generated.
Solution Consider a subgroup G of Sym(Z). Let θ be the map
‘add 2’, and let ψ be the permutation (1, 2). Let G =〉θ, ψ〉. Thus
G is finitely generated. Now let H be the group generated by
all conjugates of ψ by (positive and negative) powers of θ. Each
element of H has finite support, but every integer is moved by
some element of H, so H cannot be finitely generated.

4. (a) Suppose that G is a group with normal subgroups M , N such that
M ∩N = 1. Prove that if m ∈M and n ∈ N , then mn = nm.
Solution m−1n−1mn = (n−1)m ·m = m−1 ·mn ∈ M ∩ N = 1.
Thus mn = nm.

(b) Suppose that p is a prime number, and that the group H has order
p2, then the group H must be abelian. Let the conjugacy classes of
G be C1, . . . , Ch. Suppose that xi ∈ Ci for each i and let ci = |Ci|
for every i. We may assume that x1 = 1 and so C1 = {1}. Every
Ci = |G : CG(xi)| and so must be 1, p or p2. Now p2 = |G| =

∑
i ci

so the number of conjugacy classes of size 1 must be a multiple
of p, and there is at least one such conjugacy class, so there must
be at least p such classes. Let {x} be such a class with x 6= 1.
If o(x) = p2 then G is cyclic and therefore abelian. Otherwise
o(x) = p. Choose y ∈ G− 〈x〉. Now x is central so H = 〈x, y〉 has
size at least p + 1 and is abelian. By Lagrange’s theorem H = G
so G is abelian.

(c) Prove that any group of order 352 must be abelian. You may appeal
to Sylow’s theorems.
Solution The number of Sylow 5-subgroups must be 1 mod 5 and
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divide 49 and so must be 1. The number of Sylow 7-subgroups
must be 1 mod 7 and divide 25 and so must be 1. Thus there are
unique normal subgroups P and Q of orders 25 and 49 respectively.
Each of P and Q is abelian by part (b). Moreover elements of P
commute with elements of Q by part (a). Now |PQ| = |P | ·
|Q|/|P ∩Q| = 352. Thus G = PQ so G must be abelian.
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