MATH30038 Advanced Group Theory Exam Solutions 2002

©G.C.Smith 2003

1. For the purposes of this question, we define a Dihedral Group to be a group $D=\langle x, y\rangle$ where x and y are distinct involutions.
(a) Classify all abelian dihedral groups.

Solution x and y are distinct elements of order 2 . Let $z=x y$ which is clearly not an element of $\{1, x, y\}$. Now $G=\{1, x, y, z\}$ is closed under multiplication and $z^{2}=1$ so it is also closed under inversion. Thus G is a group of size 4, and has the following multiplicative structure: the product of any pair of different nonidentity elements is the third non-identity element.
(b) Let $z=x y$.
(i) Show that $z^{x}=z^{y}=z^{-1}$ and deduce that $H=\langle z\rangle$ is a normal subgroup of D.
Solution $z^{x}=x^{-1} x y x=y x=y^{-1} x^{-1}=z^{-1}$. Also $z^{y}=$ $y^{-1} x y y=y^{-1} x^{-1}=z^{-1}$. Thus $H^{x} \leq H$ and $H^{y} \leq H$. Each of x and y is self-inverse so every $g \in G$ is a word in x and y, and therefore $H^{g} \leq H$ for every $g \in G$ and therefore $H \unlhd D$.
(ii) Prove that $x H=y H$, and deduce that G / H is cyclic of order 1 or 2.
Solution $z=x y \in H$ so $x y H=H$ and therefore $x x y H=$ $x H$ i.e. $y H=x H$. Every element of G / H is a word in $x H$ and $y H$ and is therefore a power of $x H$. However $x^{2} H=H$ and so $G / H=H \cup x H$, so $|G: H|=2$ or 1 (as $x H \neq H$ or $x H=H)$.
(iii) Prove that $x \notin H$, and deduce that $G / H \simeq C_{2}$.

Solution If $x \in H$ then x and z commute, so x and $x z$ commute. Thus x and y commute and we are in the configuration dealt with in part (a), and in this case $x \notin H$ which is absurd. Thus $x \notin H$ so $x H \neq H$ and $|G: H|=2$.
2. (a) Exhibit a non-abelian group with non-trivial centre.

Solution The dihedral group generated by two distinct involutions with product of order 4 . We can exhibit this group as a subgroup of $S_{4}: G=\langle(1,3),(1,4)(2,3)\rangle$.
(b) Let $Z(G)$ denote the centre of the group G. Show that if $G / Z(G)$ is a cyclic group, then G must be abelian.
Solution Suppose that $G / Z(G)=\langle x Z(G)\rangle$ so $G=\langle x, Z(G)\rangle$ is abelian.
(c) Show that if G is a group such that Aut G is a cyclic group, then G must be abelian.
Solution $G / Z(G) \simeq \operatorname{Inn}(G) \leq \operatorname{Aut}(G)$. A subgroup of a cyclic group is necessarily cyclic, so $G / Z(G)$ is cyclic and part (b) applies.
3. If A, B are groups, we let $\operatorname{Hom}(A, B)$ denote the set of homomorphisms with domain A and codomain B.
(a) Explain what is meant be a finitely generated group.

Solution G is finitely generated means that there is a finite set X such that $\langle X\rangle=G$. Here $\langle X\rangle$ simultaneously denotes the intersection of all subgroups of G wich contain X, and the set of all words on letters from X and their inverses. These two notions can be proved equivalent.
(b) Suppose that G is a finitely generated group, and that H is a finite group. Show that $\operatorname{Hom}(G, H)$ is finite.
Solution Suppose that G is generated by the finite set X. If $f: G \rightarrow H$ is a map, there are $|H|$ possible images for each $x \in X$. Given also that f is a homomorphism, the 'words' view on generation shows that the image of every $g \in G$ is determined by the images of the elements of X. Thus $\operatorname{Hom}(G, H)$ has size at most $|H|^{|X|}$ and so is finite.
(c) Exhibit a group G and a finite group H such that $\operatorname{Hom}(G, H)$ is an infinite set (and make it clear why $\operatorname{Hom}(G, H)$ is infinite).
Solution Let G be the set of infinite sequences $\left(x_{i}\right)$ where each x_{i} is an element of H, a cyclic group of order 2 . Composition in G is defined termwise. For each $j \in \mathbb{N}$ we have a group homomorphism ε_{j} defined by $\left(x_{i}\right) \mapsto x_{j}$. These maps are clearly group homomorphisms. Moreover they are diferent maps. This is because if $j \neq j^{\prime}$ are natural numbers, let $y=\left(y_{i}\right) \in G$ where $y_{i}=1$ if $i \neq j$ and $y_{j} \neq 1$. Now $(y) \varepsilon_{j}=y_{j} \neq 1=(y) \varepsilon_{j^{\prime}}$.
(d) Give an example of a subgroup H of a finitely generated group G where H is not finitely generated.
Solution Consider a subgroup G of $\operatorname{Sym}(\mathbb{Z})$. Let θ be the map 'add 2', and let ψ be the permutation $(1,2)$. Let $G=\rangle \theta, \psi\rangle$. Thus G is finitely generated. Now let H be the group generated by all conjugates of ψ by (positive and negative) powers of θ. Each element of H has finite support, but every integer is moved by some element of H, so H cannot be finitely generated.
4. (a) Suppose that G is a group with normal subgroups M, N such that $M \cap N=1$. Prove that if $m \in M$ and $n \in N$, then $m n=n m$.
Solution $m^{-1} n^{-1} m n=\left(n^{-1}\right)^{m} \cdot m=m^{-1} \cdot m^{n} \in M \cap N=1$. Thus $m n=n m$.
(b) Suppose that p is a prime number, and that the group H has order p^{2}, then the group H must be abelian. Let the conjugacy classes of G be C_{1}, \ldots, C_{h}. Suppose that $x_{i} \in C_{i}$ for each i and let $c_{i}=\left|C_{i}\right|$ for every i. We may assume that $x_{1}=1$ and so $C_{1}=\{1\}$. Every $C_{i}=\left|G: C_{G}\left(x_{i}\right)\right|$ and so must be $1, p$ or p^{2}. Now $p^{2}=|G|=\sum_{i} c_{i}$ so the number of conjugacy classes of size 1 must be a multiple of p, and there is at least one such conjugacy class, so there must be at least p such classes. Let $\{x\}$ be such a class with $x \neq 1$. If $o(x)=p^{2}$ then G is cyclic and therefore abelian. Otherwise $o(x)=p$. Choose $y \in G-\langle x\rangle$. Now x is central so $H=\langle x, y\rangle$ has size at least $p+1$ and is abelian. By Lagrange's theorem $H=G$ so G is abelian.
(c) Prove that any group of order 35^{2} must be abelian. You may appeal to Sylow's theorems.
Solution The number of Sylow 5 -subgroups must be $1 \bmod 5$ and
divide 49 and so must be 1 . The number of Sylow 7 -subgroups must be $1 \bmod 7$ and divide 25 and so must be 1 . Thus there are unique normal subgroups P and Q of orders 25 and 49 respectively. Each of P and Q is abelian by part (b). Moreover elements of P commute with elements of Q by part (a). Now $|P Q|=|P|$. $|Q| /|P \cap Q|=35^{2}$. Thus $G=P Q$ so G must be abelian.

