# Group Theory: Math30038, Sheet 1 

GCS: Solutions

The course web site is available via http://www.bath.ac.uk/~masgcs/

1. Let $G$ be a group. Suppose that $x \in G$. Let

$$
C_{G}(x)=\{g \in G \mid g x=x g\} \subseteq G
$$

Prove that $C_{G}(x) \leq G$.
Solution: $\quad 1 \in C_{G}(x) \neq \emptyset$. Moreover if $g \in G$ and $g x=x g$, then $x g^{-1}=g^{-1} x$ so if $a, b \in C_{G}(x)$, then $a b^{-1} x=a x b^{-1}=x a b^{-1}$ and therefore $a b^{-1} \in C_{G}(x)$.
2. Let $G$ be a group. Suppose that $S \subseteq G$. Let

$$
C_{G}(S)=\{g \in G \mid g s=s g \forall s \in S\} .
$$

Prove that $C_{G}(S) \leq G$.
Solution: We have

$$
C_{G}(S)=\cap_{s \in S} C_{G}(s)
$$

and since the intersection of subgroups is a subgroup, we are done.
3. Let $G$ be a group. Suppose that $S \subseteq G$. Let

$$
N_{G}(S)=\{g \in G \mid g S=S g\}
$$

where $g S=\{g s \mid s \in S\}$ and $S g=\{s g \mid s \in S\}$. Prove that $C_{G}(S) \leq$ $N_{G}(S) \leq G$.
Solution: The fact that $N_{G}(S)$ is a group follows the outline of the proof that $C_{G}(x)$ is a group. The condition to be in $C_{G}(S)$ is stronger than that to be in $N_{G}(S)$ so $C_{G}(S) \leq N_{G}(S) \leq G$.
4. Let $G$ be a group. Suppose that $S \subseteq G$ and that $x \in N_{G}(S)$. Prove that $C_{G}(S) x=x C_{G}(S)$.
Solution: We will show that $C_{G}(S)=x^{-1} C_{G}(S) x$ which will suffice. Suppose that $s \in S$, then $x s=s^{\prime} x$ for some $s^{\prime} \in S$. Now shoose any $c \in C_{G}(S)$, then

$$
x^{-1} c x s=x^{-1} c s^{\prime} x=x^{-1} s^{\prime} c x=x^{-1}\left(x s x^{-1}\right) c x=s x^{-1} c x
$$

and therefore $s x^{-1} c \in C_{G}(S)$ and so $x^{-1} C_{G}(S) x \leq C_{G}(S)$. Replacing $x$ by $x^{-1}$ in this argument yields that $x C_{G}(S) x^{-1} \leq C_{G}(S)$. Premultiplying by $x^{-1}$ and postmultiplying by $x$ gives $C_{G}(S) \leq x^{-1} C_{G}(S) x$. Now we have two mutually reverse inclusions so $C_{G}(S)=x^{-1} C_{G}(S) x$ for all $x \in N_{G}(S)$.
5. Let $G$ be a finite group. Suppose that $\emptyset \neq H \subseteq G$ has the property that if $a, b \in H$, then $a b \in H$. Does it follow that $H \leq G$ ? What happens if we relax the condition that $G$ is finite?
Solution: If $h \in H$, then $\langle h\rangle \leq H$ and so $o(h)$ is a natural number $n$. If $h=1$ then $h^{-1}=h \in H$. Otherwise $n>1$ and then $h^{-1}=h^{n-1} \in H$ so $H$ is a subgroup of $G$. In the event that $G$ is infinite, things fall apart. For example perhaps $G=\mathbb{Z}$ under addition, the $\mathbb{N}$ is a non-empty additively closed subset which is not a subgroup since $-1 \notin \mathbb{N}$.
6. Suppose that $G$ is a group and that $x \in G$. Prove that $\left(x^{-1}\right)^{-1}=x$.

Solution: $\quad x^{-1} x=1=x^{-1}\left(x^{-1}\right)^{-1}$. Premultiplying by $x$ gives the result.
7. Does there exist a group $G$ containing elements $a, b$ such that $a^{2}=b^{2}=$ $(a b)^{3}=1$ ?
Solution: Yes, the trivial group will do it. More interestingly, let $G$ be the group $S_{3}$, and put $a=(1,2)$ and $b=(2,3)$. Now the orders of $a, b$ and abare exactly "as advertized".
8. Suppose that $G$ is a group with the property that $x^{2}=1$ whenever $x$ is an element of $G$. Show that $G$ must be abelian.
Solution: Suppose that $a, b \in G$, then $a b a b=1=b a a b$. Postmultiplying by $b a$ yields $a b=b a$.
9. (Challenge) Suppose that $G$ is a group with the property that $x^{3}=1$ whenever $x$ is an element of $G$. Show that $G$ need not be abelian.
Solution: Consider the set of 3 by 3 upper triangular matrices with entries in $F=\mathbb{Z}_{3}$, the field of integers modulo 3 which have 1 s on the leading diagonal. It is easy to verify that these 27 matrices form a group. Each matrix is of the form $I+\Delta$ wheer $I$ is the 3 by 3 identity matrix and $\Delta$ is strictly upper triangular. Note that $\Delta^{3}$ is the zero matrix, so the inverse of $I+\Delta$ is $I-\Delta+\Delta^{2}$ and moreover $(I+\Delta)^{3}=I+3 \Delta+3 \Delta^{2}=I$ so ev ery element of the group has order dividing 3 . The matrices $I+E_{12}$ and $I+E_{23}$ do not commute as may be verified by direct calculation; here $E_{a b}$ is the 3 by 3 matrix with entries in $F$ where the entrie in the $i$-th row and $j$-th column is $\delta_{i a} \delta_{j b}$ where $\delta$ is the Kronecker delta.

