Group Theory: Math30038, Sheet 3

GCS

The course web site is available via http://www.bath.ac.uk/~masgcs/

1. Let ϕ denote the Euler ϕ -function. Prove that for every integer n we have

$$\sum \phi(d) = n$$

where the sum is taken over all natural numbers d which divide n. Solution: In a cyclic group of order n, there are exactly $\phi(d)$ elements of order d where d is any divisor of n.

- 2. Suppose that G is a finite abelian group. Suppose that p is a prime number which divides |G|. Prove that there is an element $g \in G$ such that o(g) = p. *Hint: multiply together all the cyclic subgroups of* G. **Solution:** Follow the hint. If each element of G has order coprime to p, then it follows from the formula for the size of a product of subgroups that G has size coprime with p. This is not the case so there is an element $x \in G$ of order pm. Now $y = x^m$ has order p.
- 3. Suppose that G is a group and that K, L are both normal subgroups with the property that $K \cap L = 1$ (i.e. K and L intersect to form the trivial subgroup consisting of the identity element). Prove that every element of K commutes with every element of L. Hint: consider elements of the form $k^{-1}l^{-1}kl$ where $k \in K$ and $l \in L$. **Solution:** $k^{-1}L^k = L$ and $l^{-1}Kl = K$ by normality so $k^{-1}l^{-1}k \in L$ and $l^{-1}kl \in K$. Therefore $k^{-1}l^{-1}kl \in K \cap L = \{1\}$. Thus kl = lkwherever $k \in K$ and $l \in L$.
- 4. Suppose that G is a group and that H is a subgroup of G of finite index. Suppose that K is also a subgroup of G. Prove that $|K : H \cap K| \le |G : H|$. What can you say if this inequality is an equality? Solution: Let T be a right transversal for $H \cap K$ in K, so if $t, t' \in T$

are distinct, then $t, t' \in K$ but $tt'^{-1} \notin H \cap K$. Therefore $tt'^{-1} \notin H$. It follows that Ht, Ht' are distinct cosets. The inequality is established. We claim that equality holds if and only if HK = G. We prove this as follows. If HK = G then it is possible to choose a right transversal S for H in G consisting of elements of K. Now if s, s' are distinct elements of S then $ss'^{-1} \notin H$ and so $ss'^{-1} \notin H \cap K$. bananas.

5. Let G be a group. Suppose that $H \leq G$ and that |G:H| = 2. Prove that $H \leq G$. Can one derive the same conclusion when 2 is replaced by 3?

Solution: Suppose that $g \in G$. If $g \in H$, then gH = H = Hg. On the other hand if $g \notin G$, then $gH \neq H$, but there are only two left cosets of H in G so gH = G - H (i.e. the set of elemenst of G which are not elements of H). Similarly Hg = G - H so gH = Hg. Thus H is a normal subgroup of G. The argument will not work when 2 is replaced by 3, for we may let $G = S_3$, and put $H = \langle (1,2) \rangle$. Now H has order 2 and therefore index 3 in G. Moreover $(2,3)H = \{(2,3), (1,2,3)\}$ but $H(2,3) = \{(2,3), (1,3,2)\}.$