Group Theory: Math30038, Sheet 3

GCS

The course web site is available via http://www.bath.ac.uk/~masgcs/

1. Let ϕ denote the Euler ϕ-function. Prove that for every integer n we have

$$
\sum \phi(d)=n
$$

where the sum is taken over all natural numbers d which divide n.
Solution: In a cyclic group of order n, there are exactly $\phi(d)$ elements of order d where d is any divisor of n.
2. Suppose that G is a finite abelian group. Suppose that p is a prime number which divides $|G|$. Prove that there is an element $g \in G$ such that $o(g)=p$. Hint: multiply together all the cyclic subgroups of G.
Solution: Follow the hint. If each element of G has order coprime to p, then it follows from the formula for the size of a product of subgroups that G has size coprime with p. This is not the case so there is an element $x \in G$ of order $p m$. Now $y=x^{m}$ has order p.
3. Suppose that G is a group and that K, L are both normal subgroups with the property that $K \cap L=1$ (i.e. K and L intersect to form the trivial subgroup consisting of the identity element). Prove that every element of K commutes with every element of L. Hint: consider elements of the form $k^{-1} l^{-1} k l$ where $k \in K$ and $l \in L$.
Solution: $\quad k^{-1} L^{k}=L$ and $l^{-1} K l=K$ by normality so $k^{-1} l^{-1} k \in L$ and $l^{-1} k l \in K$. Therefore $k^{-1} l^{-1} k l \in K \cap L=\{1\}$. Thus $k l=l k$ wherever $k \in K$ and $l \in L$.
4. Suppose that G is a group and that H is a subgroup of G of finite index. Suppose that K is also a subgroup of G. Prove that $|K: H \cap K| \leq$ $|G: H|$. What can you say if this inequality is an equality?
Solution: Let T be a right transversal for $H \cap K$ in K, so if $t, t^{\prime} \in T$
are distinct, then $t, t^{\prime} \in K$ but $t t^{\prime-1} \notin H \cap K$. Therefore $t t^{\prime-1} \notin H$. It follows that $H t, H t^{\prime}$ are distinct cosets. The inequality is established. We claim that equality holds if and only if $H K=G$. We prove this as follows. If $H K=G$ then it is possible to choose a right transversal S for H in G consisting of elements of K. Now if s, s^{\prime} are distinct elements of S then $s s^{\prime-1} \notin H$ and so $s s^{\prime-1} \notin H \cap K$. bananas.
5. Let G be a group. Suppose that $H \leq G$ and that $|G: H|=2$. Prove that $H \unlhd G$. Can one derive the same conclusion when 2 is replaced by 3 ?
Solution: Suppose that $g \in G$. If $g \in H$, then $g H=H=H g$. On the other hand if $g \notin G$, then $g H \neq H$, but there are only two left cosets of H in G so $g H=G-H$ (i.e. the set of elemenst of G which are not elements of $H)$. Similarly $H g=G-H$ so $g H=H g$. Thus H is a normal subgroup of G. The argument will not work when 2 is replaced by 3 , for we may let $G=S_{3}$, and put $H=\langle(1,2)\rangle$. Now H has order 2 and therefore index 3 in G. Moreover $(2,3) H=\{(2,3),(1,2,3)\}$ but $H(2,3)=\{(2,3),(1,3,2)\}$.

