Group Theory: Math30038, Sheet 4

GCS

1. Suppose that G acts on a set Ω. If $\alpha \in \Omega$, we let

$$
G_{\alpha}=\{g \in G \mid \alpha g=\alpha\} .
$$

Now suppose that $\beta, \gamma \in \Omega$ are such that $\beta h=\gamma$ for some $h \in G$. Show that $G_{\gamma}=h^{-1} G_{\beta} h$.
Solution: Suppose that $x \in G_{\beta}$, then $\gamma h^{-1} x h=\beta h \cdot h^{-1} x h=\beta x h=$ $\beta h=\gamma$ so $h^{-1} G_{\beta} h \subseteq G_{\gamma}$. Now $\beta=\gamma h^{-1}$ so a similar argument shows that $h G_{\gamma} h^{-1} \subseteq G_{\beta}$. Premultiplying by h^{-1} and postmultiplying by h it follows that $G_{\gamma} \subseteq h^{-1} G_{\beta} h$. We have an inclusion and its reverse, so $G_{\gamma}=h^{-1} G_{\beta} h$.
2. Let P be a group of order p^{n} where p is a prime number. Suppose that P acts on a finite set Q of size q where p does not divide q. Show that this action of P has a fixed point (i.e. there is $\alpha \in Q$ such that $\alpha g=\alpha \forall g \in P)$.
Solution: If $\xi \in Q$, then the stabilizer (isotropy group) of ξ is denoted P_{ξ}, and the orbit of ξ has size $\left|P: P_{\xi}\right|$ which is a power of p. Now count Q by adding up the sizes of the orbits of P acting on Q to discover that at least one orbit must have size 1 , else q would be divisible by p.
3. In how many essentially different ways can one colour the edges of a regular octahedron using c colours (where each edge is monochromatic, and two colourings are deemed the same if one can moved to the other by a rigid motion - and reflections are not allowed).
Solution: A regular octahedron has 8 identical equilateral faces, and its group of rotational symmetries G has order 24 . There are 4 axes of symmetry through the centres of faces and the centre of the
opposite face, giving rise to 8 rotations A of order 3 . There are 3 axes of symmetry through a vertex and the opposite vertex, giving rise to 6 rotations B of order 4 and 3 rotations C of order 2 . There are 6 axes of symmetry through the centre of an edge and the centre of the opposite edge, giving rise to 6 rotations D of order 2 , and there is the identity map E. We have described $8+6+3+6+1=24$ all of which are different, and so have a list of all the elements of G. Now let Ω be the set of coloured octahedra, a set of size c^{12}. We seek to count the orbits of G acting on Ω by using the counting principle not due to Burnside.

Element type	Number of this type	\mid Fix \mid
A	8	c^{4}
B	6	c^{2}
C	3	c^{4}
D	6	c^{4}
E	1	c^{12}

The number of essentially different edge colourings of the octahedron is therefore

$$
\frac{c^{12}+17 c^{4}+6 c^{2}}{24}
$$

For example when $c=2$ this is 183 .
4. Let G be a group with subgroups H and K, each of finite index in G. Prove that $H \cap K$ has finite index in G.
Solution It follows from Sheet 3, Question 4, that $|K: H \cap K| \leq \mid G$: $H \mid<\infty$. Now $|G: H \cap K|=|G: K| \cdot|K: K \cap H|<\infty$.
5. Let G be a group and suppose that $H \leq G$ and $|G: H|<\infty$. By considering the groups $g^{-1} \mathrm{Hg}$ as g ranges over G (or otherwise), prove that G has a normal subgroup N with $|G: N|<\infty$ and $N \leq H \leq G$.
Solution: The solution to the previous question shows that the intersection of two subgroups of finite index in G is of finite index in G. A straightforward induction yields that the intersection of finitely many subgroups of finite index in G is of finite index in G. Now, it is a routine matter to check (please do it) that each set $g^{-1} \mathrm{Hg}$ is a subgroup of G (where g is an arbitrary element of G). Let $\widehat{H}=\cap_{g \in G} g^{-1} H g \leq G$. If $x \in G$ and $y \in \widehat{H}$, then $x^{-1} y x \in(g x)^{-1} H g x$ for every $g \in G$ so $x^{-1} y x \in g^{-1} H g$ for every $g \in G$. Thus $x^{-1} \widehat{H} x \leq \widehat{H}$. Similarly
$x \widehat{H} x^{-1} \leq \widehat{H}$ and therefore $\widehat{H} \leq x^{-1} \widehat{H} x$ for every $x \in G$ so \widehat{H} is a normal subgroup of G.

If T is a right transversal for H in G, then it is easy to verify that $g^{-1} T$ is a right transversal for $g^{-1} \mathrm{Hg}$ in G (please do it). Therefore each group $g^{-1} \mathrm{Hg}$ is of finite index in G. We will be finished if we can show that there are only finitely many groups $g^{-1} H g$ as g ranges over G. Suppose that $a, b \in G$ and that $a^{-1} H a \neq b^{-1} H b$ so $\left(a b^{-1}\right)^{-1} H a b^{-1} \neq H$ it follows that $a b^{-1} \notin H$ and so a and b are in different right cosets of H in G. There are only finitely many right cosets of H in G so there are only finitely many groups $g^{-1} \mathrm{Hg}$ as g ranges over G.
6. Let G be a group and suppose that $x, y \in G$. Prove that $o(x y)=o(y x)$.

Solution: $\quad y(x y)^{n}=(y x)^{n} y$ so $(x y)^{n}=1$ if and only if $(y x)^{n}=1$. Thus the orders of $x y$ and $y x$ co-incide.

