
Group Theory: Math30038, Sheet 4

GCS

1. Suppose that G acts on a set Ω. If α ∈ Ω, we let

Gα = {g ∈ G | αg = α}.

Now suppose that β, γ ∈ Ω are such that βh = γ for some h ∈ G. Show
that Gγ = h−1Gβh.
Solution: Suppose that x ∈ Gβ , then γh−1xh = βh ·h−1xh = βxh =
βh = γ so h−1Gβh ⊆ Gγ. Now β = γh−1 so a similar argument shows
that hGγh

−1 ⊆ Gβ . Premultiplying by h−1 and postmultiplying by h
it follows that Gγ ⊆ h−1Gβh. We have an inclusion and its reverse, so
Gγ = h−1Gβh.

2. Let P be a group of order pn where p is a prime number. Suppose that
P acts on a finite set Q of size q where p does not divide q. Show
that this action of P has a fixed point (i.e. there is α ∈ Q such that
αg = α∀g ∈ P ).
Solution: If ξ ∈ Q, then the stabilizer (isotropy group) of ξ is denoted
Pξ, and the orbit of ξ has size |P : Pξ| which is a power of p. Now count
Q by adding up the sizes of the orbits of P acting on Q to discover that
at least one orbit must have size 1, else q would be divisible by p.

3. In how many essentially different ways can one colour the edges of a
regular octahedron using c colours (where each edge is monochromatic,
and two colourings are deemed the same if one can moved to the other
by a rigid motion – and reflections are not allowed).
Solution: A regular octahedron has 8 identical equilateral faces,
and its group of rotational symmetries G has order 24. There are 4
axes of symmetry through the centres of faces and the centre of the

1



opposite face, giving rise to 8 rotations A of order 3. There are 3 axes
of symmetry through a vertex and the opposite vertex, giving rise to 6
rotations B of order 4 and 3 rotations C of order 2. There are 6 axes of
symmetry through the centre of an edge and the centre of the opposite
edge, giving rise to 6 rotations D of order 2, and there is the identity
map E. We have described 8 + 6 + 3 + 6 + 1 = 24 all of which are
different, and so have a list of all the elements of G. Now let Ω be the
set of coloured octahedra, a set of size c12. We seek to count the orbits
of G acting on Ω by using the counting principle not due to Burnside.

Element type Number of this type |Fix|
A 8 c4

B 6 c2

C 3 c4

D 6 c4

E 1 c12

The number of essentially different edge colourings of the octahedron
is therefore

c12 + 17c4 + 6c2

24
.

For example when c = 2 this is 183.

4. Let G be a group with subgroups H and K, each of finite index in G.
Prove that H ∩ K has finite index in G.
Solution It follows from Sheet 3, Question 4, that |K : H ∩K| ≤ |G :
H| < ∞. Now |G : H ∩ K| = |G : K| · |K : K ∩ H| < ∞.

5. Let G be a group and suppose that H ≤ G and |G : H| < ∞. By consid-
ering the groups g−1Hg as g ranges over G (or otherwise), prove that
G has a normal subgroup N with |G : N | < ∞ and N ≤ H ≤ G.
Solution: The solution to the previous question shows that the inter-
section of two subgroups of finite index in G is of finite index in G. A
straightforward induction yields that the intersection of finitely many
subgroups of finite index in G is of finite index in G. Now, it is a rou-
tine matter to check (please do it) that each set g−1Hg is a subgroup of

G (where g is an arbitrary element of G). Let Ĥ = ∩g∈Gg−1Hg ≤ G.

If x ∈ G and y ∈ Ĥ, then x−1yx ∈ (gx)−1Hgx for every g ∈ G

so x−1yx ∈ g−1Hg for every g ∈ G. Thus x−1Ĥx ≤ Ĥ . Similarly
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xĤx−1 ≤ Ĥ and therefore Ĥ ≤ x−1Ĥx for every x ∈ G so Ĥ is a
normal subgroup of G.

If T is a right transversal for H in G, then it is easy to verify that
g−1T is a right transversal for g−1Hg in G (please do it). Therefore
each group g−1Hg is of finite index in G. We will be finished if we can
show that there are only finitely many groups g−1Hg as g ranges over G.
Suppose that a, b ∈ G and that a−1Ha 6= b−1Hb so (ab−1)−1Hab−1 6= H
it follows that ab−1 6∈ H and so a and b are in different right cosets of
H in G. There are only finitely many right cosets of H in G so there
are only finitely many groups g−1Hg as g ranges over G.

6. Let G be a group and suppose that x, y ∈ G. Prove that o(xy) = o(yx).
Solution: y(xy)n = (yx)ny so (xy)n = 1 if and only if (yx)n = 1.
Thus the orders of xy and yx co-incide.
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