Group Theory: Math30038, Sheet 5

GCS

1. Let $G=S_{n}$ be the symmetric group on $\{1,2, \ldots, n\}$, so $|G|=n$! and the elements of G are the permutations of $\{1,2, \ldots, n\}$.
(a) Suppose that $\left(a_{1}, a_{2}, \ldots, a_{t}\right) \in G$ is a cycle, and that $g \in G$. Show that $g^{-1}\left(a_{1}, a_{2}, \ldots, a_{t}\right) g=\left(a_{1} g, a_{2} g, \ldots, a_{t} g\right)$.
(b) Each element of G can be expressed as a product of disjoint cycles (elements of G are disjoint if their supports are disjoint). Show that the number of conjugacy classes in S_{n} is the number of ways of writing n as an ascending sum $a_{1}+a_{2}+\cdots+a_{t}$ of positive integers $a_{1} \leq a_{2} \leq \cdots \leq a_{t}$. Thus there are 3 conjugacy classes in S_{3} because 3 can be written as an ascending sum in three ways: $3,1+2,1+1+1$. Also in S_{4} there are 5 conjugacy classes because 4 is $4,1+3,1+1+2,2+2$ and $1+1+1+1$.
(c) Determine the number of conjugacy classes in S_{5}, and the size of each conjugacy class, and describe the centralizer in G of a chosen representative of each conjugacy class.
2. Let $G=S_{n}$. Let $x=(1,2, \ldots, n) \in G$. Prove that $C_{G}(x)=\langle x\rangle$.
3. Show that in S_{4} there is a non-identity element y such that $C_{G}(y) \neq\langle y\rangle$.
4. Suppose that G is a finite group. Show that the number of elements in each conjugacy class of G must divide G.
5. Let G be a group with a subgroup H such that $g^{-1} H g \subseteq H$ for every $g \in G$. Prove that $g^{-1} H g=H$ for every $g \in G$.
6. (Challenge) Does there exist a group G containing an element g and a subgroup H such that $g^{-1} H g \subseteq H$ but $g^{-1} H g \neq H$.
7. Suppose that G is a group and that $H \leq G$. Choose $g \in G$. Prove that $g^{-1} H g \leq G$.
8. Let G be a finite group of order n which has t conjugacy classes. Elements x and y are each selected uniformly at random from G. What is the probability that x and y commute? Does this make sense for abelian groups?
9. Show that a finite group with exactly two conjugacy classes must have two elements.
10. Let G be a containing H a subgroup of finite index. Let $S=\left\{x^{-1} H x \mid\right.$ $x \in G\}$. Let G act on S by conjugation so if $K \in S$ then $K \cdot g=g^{-1} K g$. Verify that this is a group action, and deduce that $|S|=\left|G: N_{G}(H)\right|$ where $N_{G}(H)=\{g \in G \mid g H=H g\}$. Deduce that $|S|$ is finite and divides $|G: H|$.
