
Group Theory: Math30038, Sheet 5

Solutions GCS

1. Let G = Sn be the symmetric group on {1, 2, . . . , n}, so |G| = n! and
the elements of G are the permutations of {1, 2, . . . , n}.
(a) Suppose that (a1, a2, . . . , at) ∈ G is a cycle, and that g ∈ G. Show

that g−1(a1, a2, . . . , at)g = (a1g, a2g, . . . , atg).
Solution: If x 6= aig for any i, then xg−1 6= ai for any i, so
xg−1(a1, a2, . . . , at)g = xg−1g = x. However, if x = aig for some
i, then xg−1(a1, a2, . . . , at)g = aigg−1(a1, a2, . . . , at)g
= ai(a1, a2, . . . , at)g = ai+1g. Thus we can describe
g−1(a1, a2, . . . , at)g by the notation (a1g, a2g, . . . , atg).

(b) Each element of G can be expressed as a product of disjoint cycles
(elements of G are disjoint if their supports are disjoint). Show
that the number of conjugacy classes in Sn is the number of ways
of writing n as an ascending sum a1 + a2 + · · · + at of positive
integers a1 ≤ a2 ≤ · · · ≤ at. Thus there are 3 conjugacy classes in
S3 because 3 can be written as an ascending sum in three ways:
3, 1+2, 1+1+1. Also in S4 there are 5 conjugacy classes be cause
4 is 4, 1 + 3, 1 + 1 + 2, 2 + 2 and 1 + 1 + 1 + 1.
Solution: Conjugation sends cycles to cycles (of the same length).
Morover, the calculation performed for Question 1 shows how g
must be chosen to effect the required conjugation. In particular
any two cycles of length r are conjugate in Sn by a suitably chosen
g. Conjugation sends disjoint cycles to conjugate disjoint cycles
so conjugacy classes in Sn consist of all elements with a given
‘cycle shape’. Thus the cycle shapes characterize the conjugacy
classes, and these shapes can be specified by listing the lengths of
the disjoint cycles in ascending order.
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(c) Determine the number of conjugacy classes in S5, and the size of
each conjugacy class, and describe the centralizer in G of a chosen
representative of each conjugacy class.
Solution: Here is a transversal for the conjugacy classes: id,
(1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 3, 4, 5), (1, 2)(3, 4, 5) and (1, 2)(3, 4).
The corresponding conjugacy classes have sizes 1, 10, 20, 30, 24, 20
and 15 and happily these numbers sum to 120 = 5!. The cor-
responding centralizers must have orders 120, 12, 6, 4, 5, 6 and 8.
This enables us to identify them as G = S5, 〈(1, 2), (3, 4, 5), (3, 4)〉,
〈(1, 2, 3), (4, 5)〉, 〈(1, 2, 3, 4)〉, 〈(1, 2, 3, 4, 5)〉, 〈(1, 2), (3, 4, 5)〉 and
〈(1, 2, 3, 4), (1, 2)〉.

2. Let G = Sn. Let x = (1, 2, . . . , n) ∈ G. Prove that CG(x) = 〈x〉.
Solution: The conjugacy class of x has size (n−1)! so CG(x) has index
(n − 1)! and therefore order n. However 〈x〉 ≤ CG(x) and |〈x〉| = n so
CG(x) = 〈x〉.

3. Show that in S4 there is a non-identity element y such that CG(y) 6= 〈y〉.
Solution: (1,2) centralizes (1,2)(3,4) (and vice versa).

4. Suppose that G is a finite group. Show that the number of elements in
each conjugacy class of G must divide G.
Solution: Suppose that x ∈ G and that C is the conjugacy class of
x. We know that |C| = |G : CG(x)| but |G| = |G : CG(x)| · |CG(x)| and
we are done.

5. Let G be a group with a subgroup H such that g−1Hg ⊆ H for every
g ∈ G. Prove that g−1Hg = H for every g ∈ G.
Solution: This is a standard trick. If g−1Hg ⊆ H for every g ∈ G,
then replacing g by g−1 we obtain that gHg−1 ⊆ H for every g ∈ G.
Therefore H ⊆ g−1Hg for every g ∈ G and so H = g−1Hg for every
g ∈ G.

6. (Challenge) Does there exist a group G containing an element g and a
subgroup H such that g−1Hg ⊆ H but g−1Hg 6= H.
Solution: Yes. Let G be the set of 2 by 2 invertible rational matrices.
Let H be the set of upper unitriangular matrices with integer entry in
the top right position. Let g be the diagonal matrix diag(1, 2).
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7. Suppose that G is a group and that H ≤ G. Choose g ∈ G. Prove that
g−1Hg ≤ G.
Solution: g−11g ∈ g−1Hg 6= ∅. If g−1ag, g−1bg ∈ g−1Hg, then
g−1agg−1bg = g−1abg ∈ g−1Hg, As for inversion, the inverse of g−1ag
is g−1a−1g ∈ g−1Hg,

8. Let G be a finite group of order n which has t conjugacy classes. El-
ements x and y are each selected uniformly at random from G. What
is the probability that x and y commute? Does this make sense for
abelian group s?
Solution: Let Γ = {(x, y)|x, y ∈ G, xy = yx}. Now the required
probability is

p =
1

|G|2 |Γ| =
1

|G|2
∑

x∈G

|CG(x)|

and by not Burnside’s counting lemma this is t/n.

9. Show that a finite group with exactly two conjugacy classes must have
two elements.
Solution: We have proved that the number of elements in a conjugacy
class of a finite group must divide the order of the group. If the group
order is n this forces n − 1 to divide n which forces n = 2.

10. Let G be a containing H a subgroup of finite index. Let S = {x−1Hx |
x ∈ G}. Let G act on S by conjugation so if K ∈ S then K ·g = g−1Kg.
Verify that this is a group action, and deduce that |S| = |G : NG(H)|
where NG(H) = {g ∈ G | gH = Hg}. Deduce that |S| is finite and
divides |G : H|.
Solution: Suppose that A ∈ S so that A = x−1Hx for some x ∈
G. Take elements a, b ∈ G. Now A · 1 = 1−1A1 = A and A · ab =
b−1a−1Aab = (A · a) · b. Thus we have a group action. There is a single
orbit of this action, and the orbit is in bijective correspondence with
the right cosets of the stabilizer of H. This is {g ∈ G | g−1Hg = H}
a group known as NG(H) and called the normalizer of H in G (and of
course H ≤ NG(H) and in fact H �NG(H)). Thus |S| = |G : NG(H)|
but of course |G : H| = |G : NG(H)| · |NG(H) : H| and we were given
that |G : H| < ∞. Thus |S| is finite and a divisor of |G : H|.
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