Group Theory: Math30038, Sheet 5

Solutions GCS

- 1. Let $G = S_n$ be the symmetric group on $\{1, 2, ..., n\}$, so |G| = n! and the elements of G are the permutations of $\{1, 2, ..., n\}$.
 - (a) Suppose that $(a_1, a_2, ..., a_t) \in G$ is a cycle, and that $g \in G$. Show that $g^{-1}(a_1, a_2, ..., a_t)g = (a_1g, a_2g, ..., a_tg)$. Solution: If $x \neq a_ig$ for any i, then $xg^{-1} \neq a_i$ for any i, so $xg^{-1}(a_1, a_2, ..., a_t)g = xg^{-1}g = x$. However, if $x = a_ig$ for some i, then $xg^{-1}(a_1, a_2, ..., a_t)g = a_igg^{-1}(a_1, a_2, ..., a_t)g$ = $a_i(a_1, a_2, ..., a_t)g = a_{i+1}g$. Thus we can describe $g^{-1}(a_1, a_2, ..., a_t)g$ by the notation $(a_1g, a_2g, ..., a_tg)$.
 - (b) Each element of G can be expressed as a product of disjoint cycles (elements of G are disjoint if their supports are disjoint). Show that the number of conjugacy classes in S_n is the number of ways of writing n as an ascending sum $a_1 + a_2 + \cdots + a_t$ of positive integers $a_1 \leq a_2 \leq \cdots \leq a_t$. Thus there are 3 conjugacy classes in S_3 because 3 can be written as an ascending sum in three ways: 3, 1+2, 1+1+1. Also in S_4 there are 5 conjugacy classes be cause S_4 is S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 is S_4 there are 5 conjugacy classes be cause S_4 in S_4 there are 5 conjugacy classes be cause S_4 in S_4 there are 5 conjugacy classes be cause S_4 in S_4 there are 5 conjugacy classes be cause S_4 in S_4 there are 5 conjugacy classes be cause S_4 in S_4 there are 5 conjugacy classes be cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conjugacy classes are cause S_4 in S_4 there are 5 conj

Solution: Conjugation sends cycles to cycles (of the same length). Morover, the calculation performed for Question 1 shows how g must be chosen to effect the required conjugation. In particular any two cycles of length r are conjugate in S_n by a suitably chosen g. Conjugation sends disjoint cycles to conjugate disjoint cycles so conjugacy classes in S_n consist of all elements with a given 'cycle shape'. Thus the cycle shapes characterize the conjugacy classes, and these shapes can be specified by listing the lengths of the disjoint cycles in ascending order.

- (c) Determine the number of conjugacy classes in S_5 , and the size of each conjugacy class, and describe the centralizer in G of a chosen representative of each conjugacy class.
 - **Solution:** Here is a transversal for the conjugacy classes: id, (1,2), (1,2,3), (1,2,3,4), (1,2,3,4,5), (1,2)(3,4,5) and (1,2)(3,4). The corresponding conjugacy classes have sizes 1, 10, 20, 30, 24, 20 and 15 and happily these numbers sum to 120 = 5!. The corresponding centralizers must have orders 120, 12, 6, 4, 5, 6 and 8. This enables us to identify them as $G = S_5$, $\langle (1,2), (3,4,5), (3,4) \rangle$, $\langle (1,2,3), (4,5) \rangle$, $\langle (1,2,3,4) \rangle$, $\langle (1,2,3,4), (1,2) \rangle$.
- 2. Let $G = S_n$. Let $x = (1, 2, ..., n) \in G$. Prove that $C_G(x) = \langle x \rangle$. Solution: The conjugacy class of x has size (n-1)! so $C_G(x)$ has index (n-1)! and therefore order n. However $\langle x \rangle \leq C_G(x)$ and $|\langle x \rangle| = n$ so $C_G(x) = \langle x \rangle$.
- 3. Show that in S_4 there is a non-identity element y such that $C_G(y) \neq \langle y \rangle$. Solution: (1,2) centralizes (1,2)(3,4) (and vice versa).
- 4. Suppose that G is a finite group. Show that the number of elements in each conjugacy class of G must divide G. Solution: Suppose that $x \in G$ and that C is the conjugacy class of x. We know that $|C| = |G : C_G(x)|$ but $|G| = |G : C_G(x)| \cdot |C_G(x)|$ and we are done.
- 5. Let G be a group with a subgroup H such that g⁻¹Hg ⊆ H for every g ∈ G. Prove that g⁻¹Hg = H for every g ∈ G.
 Solution: This is a standard trick. If g⁻¹Hg ⊆ H for every g ∈ G, then replacing g by g⁻¹ we obtain that gHg⁻¹ ⊆ H for every g ∈ G. Therefore H ⊆ g⁻¹Hg for every g ∈ G and so H = g⁻¹Hg for every g ∈ G.
- 6. (Challenge) Does there exist a group G containing an element g and a subgroup H such that g⁻¹Hg ⊆ H but g⁻¹Hg ≠ H.
 Solution: Yes. Let G be the set of 2 by 2 invertible rational matrices. Let H be the set of upper unitriangular matrices with integer entry in the top right position. Let g be the diagonal matrix diag(1, 2).

7. Suppose that G is a group and that $H \leq G$. Choose $g \in G$. Prove that $g^{-1}Hg \leq G$.

Solution: $g^{-1}1g \in g^{-1}Hg \neq \emptyset$. If $g^{-1}ag, g^{-1}bg \in g^{-1}Hg$, then $g^{-1}agg^{-1}bg = g^{-1}abg \in g^{-1}Hg$, As for inversion, the inverse of $g^{-1}ag$ is $g^{-1}a^{-1}g \in g^{-1}Hg$,

8. Let G be a finite group of order n which has t conjugacy classes. Elements x and y are each selected uniformly at random from G. What is the probability that x and y commute? Does this make sense for abelian group s?

Solution: Let $\Gamma = \{(x,y)|x,y \in G, xy = yx\}$. Now the required probability is

$$p = \frac{1}{|G|^2} |\Gamma| = \frac{1}{|G|^2} \sum_{x \in G} |C_G(x)|$$

and by not Burnside's counting lemma this is t/n.

9. Show that a finite group with exactly two conjugacy classes must have two elements.

Solution: We have proved that the number of elements in a conjugacy class of a finite group must divide the order of the group. If the group order is n this forces n-1 to divide n which forces n=2.

10. Let G be a containing H a subgroup of finite index. Let $S = \{x^{-1}Hx \mid x \in G\}$. Let G act on S by conjugation so if $K \in S$ then $K \cdot g = g^{-1}Kg$. Verify that this is a group action, and deduce that $|S| = |G: N_G(H)|$ where $N_G(H) = \{g \in G \mid gH = Hg\}$. Deduce that |S| is finite and divides |G: H|.

Solution: Suppose that $A \in S$ so that $A = x^{-1}Hx$ for some $x \in G$. Take elements $a, b \in G$. Now $A \cdot 1 = 1^{-1}A1 = A$ and $A \cdot ab = b^{-1}a^{-1}Aab = (A \cdot a) \cdot b$. Thus we have a group action. There is a single orbit of this action, and the orbit is in bijective correspondence with the right cosets of the stabilizer of H. This is $\{g \in G \mid g^{-1}Hg = H\}$ a group known as $N_G(H)$ and called the normalizer of H in G (and of course $H \leq N_G(H)$ and in fact $H \leq N_G(H)$). Thus $|S| = |G : N_G(H)|$ but of course $|G : H| = |G : N_G(H)| \cdot |N_G(H) : H|$ and we were given that $|G : H| < \infty$. Thus |S| is finite and a divisor of |G : H|.