Group Theory: Math30038, Sheet 6

GCS

1. Consider the group D of rigid symmetries of a regular n-gon (which may be turned over). Prove that this group has order $2 n$, is non-abelian, and can be generated by two elements each of order 2 . Show that D has a cyclic subgroup of index 2 .
2. Consider the group D of rigid symmetries of the integers: so D is the group of all bijections θ from \mathbb{Z} to \mathbb{Z} which preserve distance. Thus θ must have the property that if $x, y \in \mathbb{Z}$, then $|x-y|=|(x) \theta-(y) \theta|$. Prove that this group has infinite order, is non-abelian, and can be generated by two elements each of order 2 . Show that D has a cyclic subgroup of index 2 .
3. Let $D=\langle x, y\rangle$ where $o(x)=o(y)=2$ and $x \neq y$. Let $z=x y$ and put $H=\langle z\rangle$.
(a) Prove that $x^{-1} z x=y^{-1} z y=z^{-1}$.
(b) Prove that $x, y \notin H$.
(c) Prove that $|G: H|=2$.
(d) Let $n=o(z) \in \mathbb{N} \cup\{\infty\}$. For each possible value of n let G be called D_{n}. Show that the multiplication in D_{n} is completely determined (i.e. the number n nails down the group).
(e) For each $n \in \mathbb{N} \cup\{\infty\}$, determine the centre of D_{n}.
(f) Determine the conjugacy classes of D_{8}.
(g) Do you recognize D_{6} ?
4. Suppose that G is a non-abelian finite group of order $2 p$ where p is a prime number. Prove that G is generated by two elements order 2 .
5. We define a subgroup Q of S_{8} by letting $i=(1,2,3,4)(5,6,7,8), j=$ $(1,5,3,7)(2,8,4,6)$ (and NOT $(2,6,4,8)$ as earlier stated) and put $Q=\langle i, j\rangle$. Let $k=i j$ and $z=i^{2}$. This group was the basis of William Rowan Hamilton's generalization of the complex numbers called the Quaternions.
(a) Show that $i^{2}=j^{2}=k^{2}=z$ and $z^{2}=1$.
(b) Show that $i j=k, j k=i$ and $k i=j$.
(c) Show that $j i=z k, k j=z i$ and $i k=z j$.
(d) Show that z is in the centre of Q.
(e) Show that $Q=\langle i\rangle \cup z\langle i\rangle$.
(f) Show that $|Q|=8$.
(g) Show that Q and D_{8} (in Question 1) are both non-abelian groups of order 8 , but they contain different numbers of elements of order 4.
(h) Determine the conjugacy classes of Q.
(i) On which bridge are the quaternions inscribed?
6. Let G denote the set of invertible n by n matrices with complex entries. This is a group under multiplication of matrices. Give a transversal for the conjugacy classes of G. Hint: the course MA20012 does this (and not much else).
7. Show that if N is a normal subgroup of G, then N must be a union of conjugacy classes of G. Deduce that the only normal subgroups of A_{5} are 1 and A_{5}, but that A_{4} has a normal subgroup M which is neither 1 nor A_{4}.
