Group Theory: Math30038, Sheet 6

GCS

- 1. Consider the group D of rigid symmetries of a regular n-gon (which may be turned over). Prove that this group has order 2n, is non-abelian, and can be generated by two elements each of order 2. Show that Dhas a cyclic subgroup of index 2.
- 2. Consider the group D of rigid symmetries of the integers: so D is the group of all bijections θ from \mathbb{Z} to \mathbb{Z} which preserve distance. Thus θ must have the property that if $x, y \in \mathbb{Z}$, then $|x y| = |(x)\theta (y)\theta|$. Prove that this group has infinite order, is non-abelian, and can be generated by two elements each of order 2. Show that D has a cyclic subgroup of index 2.
- 3. Let $D = \langle x, y \rangle$ where o(x) = o(y) = 2 and $x \neq y$. Let z = xy and put $H = \langle z \rangle$.
 - (a) Prove that $x^{-1}zx = y^{-1}zy = z^{-1}$.
 - (b) Prove that $x, y \notin H$.
 - (c) Prove that |G:H| = 2.
 - (d) Let $n = o(z) \in \mathbb{N} \cup \{\infty\}$. For each possible value of n let G be called D_n . Show that the multiplication in D_n is completely determined (i.e. the number n nails down the group).
 - (e) For each $n \in \mathbb{N} \cup \{\infty\}$, determine the centre of D_n .
 - (f) Determine the conjugacy classes of D_8 .
 - (g) Do you recognize D_6 ?
- 4. Suppose that G is a non-abelian finite group of order 2p where p is a prime number. Prove that G is generated by two elements order 2.

- 5. We define a subgroup Q of S_8 by letting i = (1, 2, 3, 4)(5, 6, 7, 8), j = (1, 5, 3, 7)(2, 8, 4, 6) (and NOT (2, 6, 4, 8) as earlier stated) and put $Q = \langle i, j \rangle$. Let k = ij and $z = i^2$. This group was the basis of William Rowan Hamilton's generalization of the complex numbers called the Quaternions.
 - (a) Show that $i^2 = j^2 = k^2 = z$ and $z^2 = 1$.
 - (b) Show that ij = k, jk = i and ki = j.
 - (c) Show that ji = zk, kj = zi and ik = zj.
 - (d) Show that z is in the centre of Q.
 - (e) Show that $Q = \langle i \rangle \cup z \langle i \rangle$.
 - (f) Show that |Q| = 8.
 - (g) Show that Q and D_8 (in Question 1) are both non-abelian groups of order 8, but they contain different numbers of elements of order 4.
 - (h) Determine the conjugacy classes of Q.
 - (i) On which bridge are the quaternions inscribed?
- 6. Let G denote the set of invertible n by n matrices with complex entries. This is a group under multiplication of matrices. Give a transversal for the conjugacy classes of G. Hint: the course MA20012 does this (and not much else).
- 7. Show that if N is a normal subgroup of G, then N must be a union of conjugacy classes of G. Deduce that the only normal subgroups of A_5 are 1 and A_5 , but that A_4 has a normal subgroup M which is neither 1 nor A_4 .