
Group Theory: Math30038, Sheet 6

Solutions GCS

1. Consider the group D of rigid symmetries of a regular n-gon (which may
be turned over). Prove that this group has order 2n, is non-abelian, and
can be generated by two elements each of order 2. Show that D has a
cyclic subgroup of index 2.
Solution Each axis of symmetry of a regular n-gon either passes
through a vertex and the midpoint of the opposite side (if n is odd) or
a pair of opposite vertices or mid-points of sides (if n is even), Either
way, these give rise to n elements of order 2 in D which are relections
in these axes. Label the vertices with the numbers from 1 to n in
clockwise order. Suppose that n = 2r + 1 is odd. In this event let
x = (2, n)(3, n−1) · · · (r+1, r+2) and y = (1, 2)(n, 3) · · · (r+1, r+3).
Now z = xy = (1, 2, 3, . . . , n) and yx = z−1 6= z since n ≥ 3 for
non-triviality. Thus D is non-abelian. In the degenerate case n = 2
the group is in fact abelian. Now 〈z〉 is the cyclic group of order n
consisting of rotations, and x〈z〉 is the set of n reflections mentioned
earlier. This exhausts D and D = 〈x, y〉. Next suppose that n = 2r is
even. This time let

x = (1, 2)(n, 3) · · · (r + 2, r + 3)

and
y = (1, 3)(n, 4) · · · (r + 1, r + 3)

so xy = (1, 2, 3, . . . , n) and the same story unfolds.

2. Consider the group D of rigid symmetries of the integers: so D is the
group of all bijections θ from Z to Zwhich preserve distance. Thus θ
must have the property that if x, y ∈ Z, then |x − y| = |(x)θ − (y)θ|.
Prove that this group has infinite order, is non-abelian, and can be
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generated by two elements each of order 2. Show that D has a cyclic
subgroup of index 2.
Solution Let

x = (1,−1)(2,−2)(3,−3) · · ·
and

y = (0, 1)(−1, 2)(−2, 3) · · · .
Now xy is the map which sends z to z +1 for every integer z. Now 〈xy〉
is a cyclic subgroup of D. Any element t of D which is not in 〈xy〉 must
send 0 to c and 1 to c− 1. Now t(xy)−c+1 sends 0 to 1 and 1 to 0. The
definition of D ensures that t(xy)−c+1 = y and so t = y(xy)c−1 ∈ y〈xy〉.
Thus the index of 〈xy〉 in D is at most 2. However, y 6∈ 〈xy〉 since y
reverses the direction of the integers. Thus |D : 〈xy〉| = 2.

3. Let D = 〈x, y〉 where o(x) = o(y) = 2 and x 6= y. Let z = xy and put
H = 〈z〉.
(a) Prove that x−1zx = y−1zy = z−1.

Solution x−1zx = x−1xyx = yx = y−1x−1 = z−1. Also y−1zy =
y−1xy2 = y−1x−1 = z−1.

(b) Prove that x, y 6∈ H.
Solution If x ∈ H, then x−1zx = z−1 but also x−1zx = z since
H is cyclic and therefore abelian. Thus z2 = 1. A cyclic group
can contain at most one subgroup of order 2, and so x = z = xy
so y = 1 which contradicts o(y) = 2. Therefore x 6∈ H. If y ∈ H
then x = zy ∈ H which we know is not the case, so y 6∈ H.

(c) Prove that |G : H| = 2.
Solution Since x−1 = x and y−1 = y, and both x and y square to
1, any element of D must be either 1, or xyx · · ·xyx or yxy · · · yxy
or a power of z. Now xyx · · ·xyx ∈ x〈z〉 and yxy · · · yxy =
xxyxy · · · yxy ∈ x〈z〉. Thus the index of H is at most 2. Since
x 6∈ H it follows that |G : H| = 2.

(d) Let n = o(z) ∈ N∪{∞}. For each possible value of n let G be called
Dn. Show that the multiplication in Dn is completely determined
(i.e. the number n nails down the group).
Solution We have shown that in each group D there is a cyclic
subgroup H = 〈z〉 of index 2, and that xH 6= H. Therefore every
element of Dn is uniquely expressible at xεh where ε ∈ {0, 1}
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and h ∈ H. Note that zx = z−1 so hx = h−1 for all h ∈ H.
Multiplication is as follows: suppose that h, k ∈ H = 〈z〉. We
have

h · k = hk
h · xkk = xhxk = xh−1k
xh · k = xhk

xh · xk = hxk = h−1k

Thus the only issue is how multiplication happens in H, but H =
〈s〉 is cyclic and its multiplication is determined by the single
number n = o(s).

(e) For each n ∈ N ∪ {∞}, determine the centre of Dn.
Solution There is no group D1. The group D2 is of order 4
and so is abelian. Let us suppose that n ≥ 3. Now 〈xy〉 contains
at most one element of order 2. If n is odd or infinite, there is
no such element, but if n = 2r is even, there is such an element
w = zr and since wx = wy = w, w is central. If t = xzm is in Dn

but not in H = 〈xy〉 for some integer m, then ty = yxyyzmy =
xxyxyyzmy = xz2z−m. Now ty = 1 if and only if z2m = z2 so o(z)
divides 2m− 2. However tx = t if and only if xzm = xz−m and so
o(z) divides 2m. Thus if t is central then o(z) must divide both
2m − 2 and 2m and so must divide 2. Thus for n > 2 the centre
of Dn is the trivial subgroup unless n is finite and even, in which
case the centre of Dn is {1, zn/2}, a cyclic subgroup of order 2.

(f) Determine the conjugacy classes of D8.
Solution I meant to ask about D4, so we will do both cases.
Let G be the group under discussion. It is easy to verify that
the centralizer of x has order 4, and is {1, z2, x, xz2}. Therefore
the conjugacy class of x in D4 has size 2. Note that xy = yxy =
xxyxy = xz2. Thus the conjugacy class of x is {x, xz2}. Now
y = xz and the centralizer of xz at least contains 1, xz, z2 and
xz3 so the conjugacy class of y has size at most 2. However yx =
xyx = zx = xz−1 = xz3. Thus the conjugacy class of y (= xz) is
{xz, xz3}. The centre of G is {1, z2} and so each of the elements
of this set is in a conjugacy class of size 1. Finally, the elements
z and z3 are non-central and therefore are in conjugacy classes of
size greater than 1. The remaining conjugacy class is therefore
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{z, z3}. In summary, the conjugacy classes of D4 are

{1}, {z2}, {z, z3}, {x, xz2}

and
{xz, xz3}.

Let us work with D8. The centralizer of x contains 1, x, z4 and
xz4 so the conjugacy class of x has size at most 16/4 = 4. Now
xy = yxy = xz2, and xyx = xz6 and xyxy = xz2z2 = xz4. Thus
the conjugacy class of x is {x, xz2, xz4, xz6}. Similar calculations
reveal that the conjugacy class of y = xz is {xz, xz3, xz5, xz7}. The
elements of H are all centralized by H and so are either central, or
are in conjugacy classes of size 2. Each element of H is conjugate
to its inverse. Therefore the conjugacy classes of D8 are

{x, xz2, xz4, xz6}, {xz, xz3, xz5, xz7}, {1}, {z4}, {z, z7}, {z2, z6}

and
{z3, z5}.

(g) Do you recognize D6?
Solution I meant to ask about D3, a non-abelian group of order
6, which is a copy of S3. Notice that S3 is generated by two distinct
elements of order 2 (as one should expect).

4. Suppose that G is a non-abelian finite group of order 2p where p is a
prime number. Prove that G is generated by two elements order 2.
Solution The fact that G is non-abelian forces the prime p to be odd.
The group G contains an element x of order 2 and an element t of order
p by Cauchy’s theorem. Now G = 〈x, t〉 is non-abelian so x and t do
not commute. Now y = xt 6= 1 and y2 = t−1xxt = 1 so y has order
2. Let T = 〈x, y〉 so T has even order more than 2, and dividing 2p.
Therefore T = G and by previous theory, G is a copy of Dp.

5. We define a subgroup Q of S8 by letting i = (1, 2, 3, 4)(5, 6, 7, 8), j =
(1, 5, 3, 7)(2, 8, 4, 6) (and NOT (2, 6, 4, 8) as earlier stated) and put
Q = 〈i, j〉. Let k = ij and z = i2. This group was the basis of
William Rowan Hamilton’s generalization of the complex numbers called
the Quaternions.
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(a) Show that i2 = j2 = k2 = z and z2 = 1.
Solution This is routine.

(b) Show that ij = k, jk = i and ki = j.
Solution This is routine.

(c) Show that ji = zk, kj = zi and ik = zj.
Solution This is routine.

(d) Show that z is in the centre of Q.
Solution z = i2 = j2 so z commutes with both i and j, so z is
central.

(e) Show that Q = 〈i〉 ∪ z〈i〉.
Solution This is nonsense. z ∈ 〈i〉 and therefore 〈i〉 ∪ z〈i〉 = 〈i〉.
However, for any element u 6∈ 〈i〉 it will be the case that Q =
〈i〉 ∪ u〈i〉. The choices for u are j, zj, k and zk. Let us choose u
to be k, and demonstrate this decomposition in this case. Any
element of Q is a word in i and j. Now j = ik−1 = ik3 so every
element of Q is a word in i and k (with positive exponents). Now
any occurrence of ik can be replaced by kiz Using this repeatedly
the ks can migrate to the left. When this is done use z = i2 to
eliminate z. If the power of k involved is even, then use k2n = i2n

to eliminate k. If the power of k involved is odd, all but one k can
be eliminated. Thus Q = 〈i〉 ∪ k〈i〉.

(f) Show that |Q| = 8.
Solution This follows immediately from the previous part.

(g) Show that Q and D8 (in Question 1) are both non-abelian groups
of order 8, but they contain different numbers of elements of order
4. .
Solution I meant to write ‘Show that Q and D4 (in Question 1)
are both non-abelian groups of order 8,’ I fear that D8 has order
16. In D4 there are 5 involutions; there are 4 reflections and one
rotation through π. In Q however, only z has order 2. One may
verify tha t the remaining six non-identity elements of Q all have
order 4. Now Q is non-abelian since ij 6= ji. D4 is non-abelian
because xy 6= yx.

(h) Determine the conjugacy classes of Q.
Solution They are

{1}, {z}, {i, zi}, {j, zj} and {k, zk}.
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There are any number of ways to demonstrate this.

(i) On which bridge are the quaternions inscribed?
Solution The Sir William Rowan Hamilton Bridge, Dublin.

6. Let G denote the set of invertible n by n matrices with complex entries.
This is a group under multiplication of matrices. Give a transversal for
the conjugacy classes of G. Hint: the course MA20012 does this (and
not much else).
Solution Jordan normal forms with “λ” non-zero.

7. Show that if N is a normal subgroup of G, then N must be a union
of conjugacy classes of G including the conjugacy class of the identity
element. Deduce that the only normal subgroups of A5 are 1 and A5,
but that A4 has a normal subgroup M which is neither 1 nor A4.
Solution Since g−1Ng = N for all g ∈ G, it follows that if n ∈ B,
then the conjugacy class of n is a subset of N . The conjugacy classes
of A5 are the conjugates of id, (1, 2, 3), (1, 2)(3, 4), (1, 2, 3, 4, 5) and
(1, 2, 3, 5, 4). These conjugacy classes have sizes 1, 20, 15, 12 and 12 re-
spectively. The only sums these sizes which include 1 and which divide
60 are 1 and 60, so A5 is a simple group. An analogous calculation for
A4 yields that the conjugacy classes of A4 have sizes 1, 3, 4 and 4. In
this case 1 + 3 is a divisor of 12, so it is possible that there is a normal
subgroup of size 4. It so happens that

{id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

is a (normal) subgroup of A4 of this order.
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