Group Theory: Math30038, Sheet 6

Solutions GCS

1. Consider the group D of rigid symmetries of a reqular n-gon (which may

be turned over). Prove that this group has order 2n, is non-abelian, and
can be generated by two elements each of order 2. Show that D has a
cyclic subgroup of index 2.
Solution FEach axis of symmetry of a regular n-gon either passes
through a vertex and the midpoint of the opposite side (if n is odd) or
a pair of opposite vertices or mid-points of sides (if n is even), Either
way, these give rise to n elements of order 2 in D which are relections
in these axes. Label the vertices with the numbers from 1 to n in
clockwise order. Suppose that n = 2r + 1 is odd. In this event let
r=(2,n)3,n=1)---(r+1,r+2)and y = (1,2)(n,3)--- (r+1,7+3).
Now 2z = zy = (1,2,3,...,n) and yr = 27 # 2z since n > 3 for
non-triviality. Thus D is non-abelian. In the degenerate case n = 2
the group is in fact abelian. Now (z) is the cyclic group of order n
consisting of rotations, and z(z) is the set of n reflections mentioned
earlier. This exhausts D and D = (z,y). Next suppose that n = 2r is
even. This time let

x=(1,2)(n,3) - (r+2,r+3)

and
y=(1,3)(n,4)---(r+ 1,7+ 3)

so zy = (1,2,3,...,n) and the same story unfolds.
2. Consider the group D of rigid symmetries of the integers: so D is the
group of all bijections 0 from Z to Z which preserve distance. Thus 0

must have the property that if x,y € Z, then |z —y| = |(x)0 — (y)0].
Prove that this group has infinite order, is non-abelian, and can be
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generated by two elements each of order 2. Show that D has a cyclic
subgroup of index 2.
Solution Let

x=(1,-1)(2,-2)(3,-3)--

and
y=1(0,1)(-1,2)(=2,3) .

Now zy is the map which sends z to z+ 1 for every integer z. Now (zy)
is a cyclic subgroup of D. Any element ¢ of D which is not in (xy) must
send 0 to c and 1 to ¢ — 1. Now t(xy) ™ sends 0 to 1 and 1 to 0. The
definition of D ensures that ¢(zy) ™™ =y and so t = y(xy)! € y(zy).
Thus the index of (xy) in D is at most 2. However, y & (xy) since y
reverses the direction of the integers. Thus |D : (xy)| = 2.

. Let D = (x,y) where o(z) = o(y) =2 and v # y. Let z = xy and put
H={(z).

(a) Prove that x='zox =y~ lzy = 271

Solution z7'zzx =z 'oyr = yr =y~ la~
yley? =yl = 2
(b) Prove that x,y ¢ H.

Solution If x € H, then 2722 = 27! but also 2722 = 2 since
H is cyclic and therefore abelian. Thus 2?2 = 1. A cyclic group
can contain at most one subgroup of order 2, and so x = z = xy
so y = 1 which contradicts o(y) = 2. Therefore x ¢ H. If y € H
then x = zy € H which we know is not the case, so y & H.

(¢) Prove that |G : H| = 2.
Solution Since 7! = 2 and y~! = y, and both z and y square to
1, any element of D must be either 1, or xyx - - - zyx or yxy - - - yxy
or a power of z. Now zyxr---zyr € x(z) and yxy---yry =
xxyxy---yry € x(z). Thus the index of H is at most 2. Since
x ¢ H it follows that |G : H| = 2.

(d) Letn = o(z) € NU{oo}. For each possible value of n let G be called
D,,. Show that the multiplication in D,, is completely determined
(i.e. the number n nails down the group).

Solution We have shown that in each group D there is a cyclic
subgroup H = (z) of index 2, and that xH # H. Therefore every
element of D,, is uniquely expressible at z°h where ¢ € {0,1}

=271 Also y 2y =
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and h € H. Note that z* = z7! so h* = h™! for all h € H.
Multiplication is as follows: suppose that h,k € H = (z). We
have

h-k = hk
h-zkk = xh®k=xh 'k
zh-k = zhk

zh-xk = h%k=h"'k

Thus the only issue is how multiplication happens in H, but H =
(s) is cyclic and its multiplication is determined by the single
number n = o(s).

For each n € NU {00}, determine the centre of D,,.

Solution There is no group D;. The group D, is of order 4
and so is abelian. Let us suppose that n > 3. Now (zy) contains
at most one element of order 2. If n is odd or infinite, there is
no such element, but if n = 2r is even, there is such an element
w = 2" and since w* = wY = w, w is central. If t = xz™ isin D,
but not in H = (zy) for some integer m, then t¥ = yxyyz"y =
rryryyz™y = vz227™. Now t¥ = 1 if and only if 2*™ = 22 s0 o(2)
divides 2m — 2. However t* =t if and only if 2" = xz7™ and so
o(z) divides 2m. Thus if ¢ is central then o(z) must divide both
2m — 2 and 2m and so must divide 2. Thus for n > 2 the centre
of D, is the trivial subgroup unless n is finite and even, in which
case the centre of D, is {1,2"/2}, a cyclic subgroup of order 2.

Determine the conjugacy classes of Dsg.

Solution I meant to ask about Dy, so we will do both cases.
Let G be the group under discussion. It is easy to verify that
the centralizer of x has order 4, and is {1, 2%, z, z2%}. Therefore
the conjugacy class of x in D, has size 2. Note that x¥ = yxy =
rxyry = rz?. Thus the conjugacy class of z is {z,72?}. Now
y = xz and the centralizer of xz at least contains 1,zz, z? and
x2% so the conjugacy class of y has size at most 2. However y* =
ryr = zx = xz~ " = x23. Thus the conjugacy class of y (= z2) is
{zz,223}. The centre of G is {1,2?} and so each of the elements
of this set is in a conjugacy class of size 1. Finally, the elements
z and 23 are non-central and therefore are in conjugacy classes of
size greater than 1. The remaining conjugacy class is therefore



{z,2%}. In summary, the conjugacy classes of D, are

{1}, {#"}, {= 2} {z 22}

and
{2z, 22°}.

Let us work with Dg. The centralizer of x contains 1, z, 2* and
rz* so the conjugacy class of z has size at most 16/4 = 4. Now
¥ = yaxy = x2?, and 2% = 22% and 2¥*Y = 22222 = 2z*. Thus
the conjugacy class of z is {x, 2% z2% 225}, Similar calculations
reveal that the conjugacy class of y = xz is {xz, x23, 22° x2"}. The
elements of H are all centralized by H and so are either central, or
are in conjugacy classes of size 2. Each element of H is conjugate
to its inverse. Therefore the conjugacy classes of Dg are

{33',3;’22,33'24,33‘26}, {33'2,33‘23,33'25,3727}, {1}7 {24}’ {2727}7 {22726}

and
{23 2°}.

(g) Do you recognize Dg?
Solution I meant to ask about D3, a non-abelian group of order
6, which is a copy of S3. Notice that S5 is generated by two distinct
elements of order 2 (as one should expect).

4. Suppose that G is a non-abelian finite group of order 2p where p is a
prime number. Prove that G is generated by two elements order 2.
Solution The fact that GG is non-abelian forces the prime p to be odd.
The group G contains an element = of order 2 and an element ¢ of order
p by Cauchy’s theorem. Now G = (x,t) is non-abelian so z and ¢ do
not commute. Now y = 2t # 1 and y? = t~'axat = 1 so y has order
2. Let T' = (x,y) so T has even order more than 2, and dividing 2p.
Therefore T' = G and by previous theory, G is a copy of D,.

5. We define a subgroup @ of Sg by letting i = (1,2,3,4)(5,6,7,8), j =
(1,5,3,7)(2,8,4,6) (and NOT (2,6,4,8) as earlier stated) and put
Q = (i,j). Let k = ij and z = 2. This group was the basis of
William Rowan Hamilton’s generalization of the complex numbers called
the Quaternions.



(a)

Show that i2 = j2 = k? = z and 22 = 1.

Solution This is routine.

Show that ¢7 = k, jk =4 and ki = j.

Solution This is routine.

Show that ji = zk, kj = 2zt and ik = zj.

Solution This is routine.

Show that z is in the centre of Q).

Solution z = i? = j2 so z commutes with both i and j, so z is
central.

Show that @ = (i) U z(3).

Solution This is nonsense. z € (i) and therefore (i) U 2(i) = (7).
However, for any element u ¢ (i) it will be the case that Q =
(1) Uu(z). The choices for u are j, zj, k and zk. Let us choose u
to be k, and demonstrate this decomposition in this case. Any
element of @ is a word in 7 and j. Now j = ik~! = ik® so every
element of @) is a word in ¢ and k (with positive exponents). Now
any occurrence of ik can be replaced by kiz Using this repeatedly
the ks can migrate to the left. When this is done use z = % to
eliminate z. If the power of k involved is even, then use k?* = 2"
to eliminate k. If the power of k involved is odd, all but one k can
be eliminated. Thus @ = (i) U k(7).

Show that |Q| = 8.

Solution This follows immediately from the previous part.

Show that @ and Ds (in Question 1) are both non-abelian groups
of order 8, but they contain different numbers of elements of order
4. .

Solution I meant to write ‘Show that @ and D, (in Question 1)
are both non-abelian groups of order 8,” I fear that Dg has order
16. In D, there are 5 involutions; there are 4 reflections and one
rotation through 7. In @) however, only z has order 2. One may
verify tha t the remaining six non-identity elements of @) all have
order 4. Now @ is non-abelian since ij # ji. D, is non-abelian
because ry # yx.

Determine the conjugacy classes of ().
Solution They are

{1}, {z}, {1, zi}, {4,257} and {k, zk}.
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There are any number of ways to demonstrate this.

(i) On which bridge are the quaternions inscribed?
Solution The Sir William Rowan Hamilton Bridge, Dublin.

6. Let G denote the set of invertible n by n matrices with complex entries.
This is a group under multiplication of matrices. Give a transversal for
the conjugacy classes of G. Hint: the course MA20012 does this (and
not much else).

Solution Jordan normal forms with “\” non-zero.

7. Show that if N is a normal subgroup of G, then N must be a union
of conjugacy classes of G including the conjugacy class of the identity
element. Deduce that the only normal subgroups of A; are 1 and As,
but that A, has a normal subgroup M which is neither 1 nor Aj.
Solution Since g7'Ng = N for all g € G, it follows that if n € B,
then the conjugacy class of n is a subset of N. The conjugacy classes
of As are the conjugates of id, (1,2,3), (1,2)(3,4), (1,2,3,4,5) and
(1,2,3,5,4). These conjugacy classes have sizes 1,20, 15,12 and 12 re-
spectively. The only sums these sizes which include 1 and which divide
60 are 1 and 60, so A5 is a simple group. An analogous calculation for
Ay yields that the conjugacy classes of A, have sizes 1,3,4 and 4. In
this case 1+ 3 is a divisor of 12, so it is possible that there is a normal
subgroup of size 4. It so happens that

{id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}

is a (normal) subgroup of A4 of this order.



