Group Theory: Math30038, Sheet 8

GCS Solutions

1. Let P be a Sylow p-subgroup of the finite group G. Suppose that $N \unlhd G$.
(a) Show that $P \cap N \in \operatorname{Syl}_{p}(N)$.

Solution $P \cap N \leq P$ so $|P \cap N|$ is a power of p. Also $P N / N \simeq$ $P / P \cap N$ so $|P N: N|=|P: P \cap N|$ but
$|P N: N| \cdot|N: P \cap N|=|P N: P \cap N|=|P N: P| \cdot|P: P \cap N|$
and therefore $|N: P \cap N|=|P N: P|$. Now $|P N: N|$ is a divisor of $|G: P|$ and so is coprime to p. Thus $P \cap N$ is a Sylow p-subgroup of N.
(b) Show that $P N / N \in \operatorname{Syl}_{p}(G / N)$.

Solution $P N / N$ has p-power order by the 2nd isomorphism theorem. Now $|G: P N|$ divides $|G: P|$ an so is coprime to p. Now $|G / N: P N / N|=|G: P N|$ since if T is a left transveral for $P N$ in G, then $\{t N \mid t \in T\}$ is easily seen to be a left transversal for $P N / N$ in G / N.
2. Show that every group of order 15 must be abelian.

Solution Sylow's theorem tells us that there are unique Sylow 5subgroups and 3 -subgroups P and Q respectively. These subgroups must be normal in G since conjugation must leave each one invariant. Now for all $a \in P$ and $b \in Q$ we have $a^{-1} b^{-1} a b \in P \cap Q=1$ so a and b commute. Now if $a \in A$, then $A \leq C_{G}(a)$ since A is cyclic (of prime order). We have just shown that $B \leq C_{G}(A)$ so $\langle A, B\rangle \leq C_{G}(a)$. Now $\langle A, B\rangle$ has order divisible by both 3 and 5 and so $G=\langle A, B\rangle$. Thus $a \in Z(G)$ so $A \leq Z(G)$. Similarly $B \leq Z(G)$ so $G=\langle A, B\rangle \leq Z(G)$ and therefore G is abelian.
3. Show that every group of order 35 must be abelian.

Solution The solution is a copy of the previous solution.
4. Show that there is no non-abelian finite simple group of order less than 60.

Solution A group of p-power order has a non-trivial centre. This will prevent G from being simple unless $G=Z(G)$ is abelian (in which case G will be simple if and only if $|G|=p$ but this is not needed). Thus there is no non-abelian finite simple group of prime power order. Now using the results of the next question we may focus on groups of the following orders: $24,40,48,54,30$ and 56 .
(a) A simple group of order 24 would have 3 Sylow 2-subgroups, and so there would (see Poincaré's theorem) be a non-trivial homomorphism from G to S_{3} which will be injective by simplicity and therefore 24 would divide 6 which is absurd.
(b) A group G of order 40 must have a unique Sylow 5 -subgroup and so can not be simple.
(c) A simple group of order 48 must have 3 sylow 2-subgroups, and so (see -G- $=24$) we can deduce that 48 divides 6 which is absurd.
(d) A group of order 54 must have a Sylow 3 -subgroup H of index 2 in G. Now any subgroup of index 2 is normal so G can not be simple.
(e) A simple group of order 30 would have 6 Sylow 5 -subgroups. Since any pair of these groups intersects in the identity, it follows that there are 24 elements of order 5. Similarly this this group must have 10 Sylow 3 -subgroups and so 20 elements of order 3 . However, $24+20>30$ so this is absurd.
(f) A simple group of order 56 would have 8 Sylow 7 -subgroups, any pair of which would intersect in the trivial group. Thus there would be 48 elements of order 7 . This leaves 8 elements remaining, which must all belong to a Sylow 2-subgroup. This Sylow 2 -subgroup is unique and therefore invariant under conjugation and thus is normal in G. This is absurd.
5. Let p and q be distinct prime numbers.
(a) Show that a group of order pq can not be simple.

Solution Suppose w.l.o.g. that $p<q$. By Sylow's theorem there is a unique Sylow q-subgroup Q. Now Q is invariant under conjugation by elements of G, and so must be a normal subgroup of G.
(b) Show that a group of order $p^{2} q$ can not be simple.

Solution Suppose (for contradiction) that G is simple. By Sylow's theorem the number of Sylow q-subgroups is p or p^{2}, and this number must be congruent to 1 modulo q. Therefore q divides $p-1$ or $p^{2}-1=(p-1)(p+1)$. In the first event $q<p$. In the second event $q<p$ or $(p, q)=(2,3)$.
Now, if $(p, q)=(2,3)$ it follows that $|G|=12$. In a non-simple group of order 12 there must be 4 Sylow 3 -subgroups, any pair of which intersect in the identity. There are therefore 8 elements of order 3 . The number of elements of order dividing 4 is therefore at most $12-8=4$. Let P be a Sylow 2 subgroup of G, a group of size 4 , all elements of P will have order dividing 4 . Thus P must consist of all the elements of G which are not of order 3. Thus there is a unique Sylow 2-subgroup which violates simplicity.
Thus we may assume that $q<p$. Now (see Poincaré's theorem) we have a non-trivial homomorphism $G \rightarrow S_{q}$ which must be injective by the simplicity of G. Now by Lagrange's theorem $|G|$ divides q ! and so p divides q ! which is false.
(c) Show that a group of order $p^{2} q^{2}$ can not be simple.

Solution Assume (for contradiction) that G is simple. The number of Sylow q subgroups q and must be p or p^{2} (by simplicity) so q divides $p-1$ or divides $p^{2}-1=(p-1)(p+1)$. Thus either $q<p$ or $q=3, q=2$ (so $|G|=36)$. Reversing the roles of p and q we obtain that either $p<q$ or $|G|=36$. Thus we are done unless $|G|=36$, but then a Sylow 3-subgroup has index 4 and so (see Poincaré's theorem) there is a non-trivial homomorphism from G to S_{4} which must be injective by simplicity. Now by Lagrange's theorem 36 divides 24 which is absurd.

