Counting snail venom

Geoff Smith, 1998

Introduction

Let $\Sigma=\{B, W\}$ be a two letter alphabet. Let Σ^{*} denote the set of words on this alphabet - that is to say finite sequences each entry of which is drawn from the alphabet. The number of terms in a sequence is its length. Notice that the number of words of length n is 2^{n} since each of the n terms may be chosen independently. The number of words involving exactly r copies of B and s copies of W is $(r+s)!/ r!s!$. This quantity is known as the binomial coefficient $\binom{r+s}{s}$ and arises in algebra via

$$
\begin{equation*}
(x+y)^{n}=\sum_{\substack{r, s \geq 0 \\ r+s=n}}\binom{r+s}{s} x^{r} y^{s} . \tag{1}
\end{equation*}
$$

where x and y are unknowns. These quantities $\binom{r+s}{s}$ also form the entries of Pascal's triangle where $r+s$ is the row number and r indexes how far the entry is from the left (and s from the right). Note that $0!=1$ in order to make everything work smoothly. Putting $x=y=1$ in (1) yields that there are 2^{n} words of length n, a fact which we have already noted. The numbers from Pascal's triangle crop up frequently when performing enumeration arguments.

We will need a fact about these binomial coefficients. Notice that

$$
-1+\binom{m}{1}-\binom{m}{2}+\binom{m}{3} \ldots(-1)^{m}\binom{m}{m}=0 \text { when } m \geq 1
$$

because then $-(1-1)^{m}=0$ and the binomial theorem applies. This really says that if you add up the entries in any row of Pascal's triangle (except the top one), alternating the signs as you go, the answer is 0 .

How big is a union of finitely many finite sets?

Suppose that you have two finite sets A and B. You can find the size of their union using

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

because when you work out $|A|+|B|$ the elements of $|A \cap B|$ are being 'counted twice'. You compensate for this by subtracting $|A \cap B|$.

Now suppose you have three finite sets. A very careful analysis of counting will show you that

$$
\begin{equation*}
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \tag{2}
\end{equation*}
$$

What is going on here is that you first try $|A|+|B|+|C|$ but this is wrong because elements in $A \cap B, A \cap C$, and $B \cap C$ have been counted too much. You therefore try to eliminate this over-counting by subtracting $|A \cap B|+|A \cap C|+|B \cap C|$, but then notice that elements of $A \cap B \cap C$ have been 'over removed'. You compensate for this by adding $|A \cap B \cap C|$ and all is well. We are edging toward the inclusion-exclusion enumeration principle. Let is look at a concrete example. Let $A=\{1,2,3,4\}, B=\{3,4,5,6\}$ and $C=\{2,3,4,5,6,7\}$. Now (2) says $7=4+4+6-2-3-4+2$, which happily is true.

We prove validity of the Inclusion-Exclusion counting principle.
Theorem Suppose $n \in \mathbb{N}$ and A_{i} is a finite set for $1 \leq i \leq n$. It follows that

$$
\begin{aligned}
\left|\bigcup_{1 \leq i \leq n} A_{i}\right|= & \sum_{1 \leq i_{1} \leq n}\left|A_{i_{1}}\right|-\sum_{1 \leq i_{1} \leq i_{2} \leq n}\left|A_{i_{1}} \cap A_{i_{2}}\right| \\
& +\sum_{1 \leq i_{1} \leq i_{2} \leq i_{3} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right|-\ldots+(-1)^{n+1}\left|\bigcap_{i=1}^{n} A_{i}\right|
\end{aligned}
$$

Proof

Induct on $\left|\cup_{i} A_{i}\right|$. If all A_{i} are empty, then the theorem holds, and the induction starts without difficulty. Now focus on the case where $\left|\cup_{i} A_{i}\right|>0$. Pick any $x \in \cup_{i} A_{i}$ and form new sets by $B_{i}=A_{i} \backslash\{x\}$ (i.e. remove x from all the sets A_{i} which contain it). Now $\left|\cup_{i} B_{i}\right|=\left|\cup_{i} A_{i}\right|-1$ so the theorem holds for the sets B_{i} by induction. Now pop x back in to all sets from which you deleted it. The re-insertion of x makes a contribution of +1 on the left hand side. On the right, suppose x occurs in exactly $m(\geq 1)$ of the A_{i}. The re-insertion of x has the effect of adding exactly $m-\binom{m}{2}+\binom{m}{3} \ldots+(-1)^{m}\binom{m}{m}$ to the right hand side. However, we have prepared the ground in the previous section, so we know that this quantity is 1 . The induction step is complete, and thus the inclusion-exclusion principle is valid.

Example Application 1

The Euler φ-function is $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\varphi(n)=\mid\{k \mid 1 \leq k \leq n, \quad \text { g.c.d. }(k, n)=1\} \mid
$$

We have not made this function up. It is an important function in number theory, combinatorics and algebra, and it has sweet properties. For example, if $a, b \in \mathbb{N}$ and a, b are coprime (i.e. have 1 as their greatest common divisor), then $\varphi(a b)=\varphi(a) \varphi(b)$. In fact this follows immediately from the next proposition.

Proposition Let the prime divisors of n be $p_{1}, p_{2}, \ldots, p_{k}$ (without repetition). It follows that

$$
\varphi(n)=n \prod_{i=1}^{k}\left(1-p_{i}^{-1}\right)
$$

Proof The theorem is trivially true if $n=1$, since the empty product is 1 . Thus we may assume $n>1$, and thus $k \geq 1$. For each i in the range $1 \leq i \leq k$ we put

$$
A_{i}=\left\{t \mid 1 \leq t \leq n, n / p_{i} \in \mathbb{N}\right\}
$$

Here we have eschewed the vertical line notation $p_{i} \mid n$ deliberately in order to avoid notational collision.

Notice that $\left|A_{i}\right|=n / p_{i}$. Moreover, if $i \neq j$ then $\left|A_{i} \cap A_{j}\right|=n / p_{i} p_{j}$ and so on. The inclusion-exclusion principle enables us to count the natural numbers between 1 and n (inclusive) which are not coprime to n in two ways.

$$
n-\varphi(n)=n \sum_{i} 1 / p_{i}-n \sum_{i_{1}<i_{2}} n / p_{i_{1}} p_{i_{2}}+\ldots
$$

Rearrange, and a use a little algebra to obtain the result.

Example Application 2

Deal two packs of shuffled cards simultaneously. What is the probability that no pair of identical cards will be exposed simultaneously?

Fix the first pack, and consider all possible rearrangements of the second pack. For each i in the range $1 \leq i \leq 52$ let A_{i} denote the set of all arrangements of the second pack which happen to have the property that the card in position i matches the card in position i of the first pack. Obviously $\left|A_{i}\right|=51$! for every i. Moreover, if $i \neq j$, then $\left|A_{i} \cap A_{j}\right|=50$! and so on. Let $X=\cup_{i} A_{i}$, so the probability of at least one match is $|X| / 52$!. We calculate this using the inclusion-exclusion principle.

$$
\begin{aligned}
|X| / 52! & =(52!)^{-1}\left(\binom{52}{1} 51!-\binom{52}{2} 50!+\binom{52}{3} 49!-\ldots-\binom{52}{52} 0!\right) \\
& =1-1 / 2!+1 / 3!-\ldots-1 / 52!\approx 1-\left(\sum_{i=0}^{\infty}(-1)^{i} / i!\right)=1-1 / e
\end{aligned}
$$

Thus the probability of no coincidences is (to an excellent approximation) $1 / e$.
Here we have use the fact that

$$
e^{x}=1+x+x^{2} / 2!+\ldots=\sum_{i=0}^{\infty} x^{i} / i!
$$

and put $x=-1$.

Enumerations related to snail venom.

We define a language L to be an arbitrary subset of Σ^{*}. Associated to a language we have a power series p_{L} in two variables b and w where

$$
p_{L}=p_{L}(b, w)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_{m n} b^{m} w^{n}
$$

and $c_{m n}$ is the number of words in L which involve exactly m copies of the letter B and n copies of the letter W.
(1) If the language L_{1} consists of all words which do not involve W then $c_{m n}=0$ whenever $n>0$, and $c_{m 0}=1$ for every m since there is exactly one word in the language of length m involving no W. Thus the power series is

$$
p_{L_{1}}=\sum_{m=0}^{\infty} b^{m}=(1-b)^{-1}
$$

(2) If the language L_{2} consists of all words in Σ^{*} of length t where t is fixed, then

$$
p_{L_{2}}=\sum_{\substack{m, n \geq 0 \\ n+m=t}} \frac{t!}{n!m!} b^{m} c^{n}
$$

If we further specify that $t=3$ to give the language \hat{L}_{2} we have

$$
p_{\hat{L}_{2}}=b^{3} w^{0}+3 b^{2} w^{1}+3 b^{1} w^{2}+b^{0} w^{3}=b^{3}+3 b^{2} w+3 b w^{2}+w^{3}
$$

In this case the power series collapse to being a polynomial expression, since all save a finite number of coefficients vanish. Notice that the coefficients here are drawn from a row of Pascal's triangle, and another way of describing $p_{L_{2}}$ is $(b+w)^{3}$. To understand this, think of + as being "or" and multiplication (juxtaposition) as being "and then". In this sense $(b+w)^{3}=(b+w)(b+w)(b+w)$ exactly describes the \hat{L}_{2}. Each word in \hat{L}_{2} is of the form: B or W, then B or W, then B or W.
(3) If the language L_{3} consists of all words where there are no juxtaposed $W \mathrm{~s}$ and no juxtaposed B s then there is one word in L_{3} of length 0 , the empty word, and exactly two words of every other length. Thus

$$
p_{L_{3}}=1+\sum_{n=0}^{\infty} b^{n} w^{n+1}+\sum_{n=0}^{\infty} b^{n+1} w^{n}+\sum_{n=1}^{\infty} 2 b^{n} w^{n}
$$

The particular languages of interest in the investigation of snail venom are the ones satisfying the following five conditions.
(i) The words involve an even number of occurrences of B.
(ii) The words begin and end with a letter B.
(iii) Words must not contain the subword $W W W W W W W$.
(iv) Words must not contain the subword $B B B$ (i.e. you must not have three consecutive occurrences of B).
(v) Suppose a word involves exactly $2 k$ occurrences of the letter B. Label them from the left the $1 s t, 2 n d, \ldots 2 k$-th. Between at least one $(2 i-1)$-th and $2 i$-th occurrence of B, there must at least two consecutive occurrences of W.

The language S specified by the first three conditions are all possible words associated with snail venom. The language defined by all five these conditions are the so-called inaccessible words, and are exactly those which do not admit of synthesis by a specific manufacturing process.

The language S is defined by conditions (i), (ii) and (iii). Let $f=(1+w+$ $\left.w^{2}+w^{3}+w^{4}+w^{5}+w^{6}\right)$. The definition of p_{S} yields that

$$
p_{S}=f+b f b+b f b f b f b+b f b f b f b+\ldots
$$

or more formally

$$
p_{S}=\sum_{i=0}^{\infty} b^{2 i} f^{2 i-1}
$$

If you wish to see you many words there are in this language of length 30 and involving 8 occurrences of B (and so 22 occurrences of W) you look at the coefficient of $b^{8} w^{22}$ and this is precisely the coefficient of w^{22} in f^{7}. This can be determined in a trice by almost any computer algebra system (AXIOM, MAPLE, REDUCE etc).

Now we proceed to the main calculation, where we also impose conditions $(i v)$ and (v), and are particularly interested in the cases where there are 4,6 and 8 occurrences of B, and when the word lengths does not happen to exceed 30. This final constraint can be imposed at the very end of the calculations by truncating the appropriate polynomial if necessary.

The Main Calculation

All these calculations are the same in spirit, but the details become a little more complicated as we proceed.

We introduce a formal and compact way of describing languages. The letters B and W stand for themselves. The letter G stands for either W or no letter, the letter F stands for consecutive W s, somewhere between 0 and 6 in number. We interpret \cup to mean the union of languages.

Four occurrences of B

Consider the three languages $C_{1}=B F B F B F B, C_{2}=B B B F B \cup B F B B B$ and $C_{3}=B G B F B G B$. The language (of inaccessible words) we are interested in is

$$
C=\left(C_{2} \cup C_{3}\right) .
$$

The polynomial for C_{1} is $b^{4} f^{3} . C_{2}$ is described by $b^{4}(2 f-1)$ and C_{3} is described by $b^{4} g^{2} f . C_{2} \cap C_{3}$ is described by $b^{4}(2 g-1)$. Thus the inaccessible language $C_{2} \cup C_{3}$ is described by

$$
b^{4}\left(2 f-1+g^{2} f-(2 g-1)\right)=b^{4}\left(2 f+g^{2} f-2 g\right)
$$

Of course, since every single polynomial in this analysis involves the factor b^{4}, we could have suppressed it. We didn't for expository reasons.

Six occurrences of B

In this section we will suppress the ever present factor b^{6}. Consider the three languages $D_{1}=B F B F B F B F B F B, D_{2}$ the language consisting of words containing three or more consecutive $B \mathrm{~s}$, and $D_{3}=B G B F B G B F B G B$. The polynomial describing D_{1} is f^{5} and that describing D_{3} is $g^{3} f^{2}$.

The language D_{2}
$D_{2}=R \cup S \cup T \cup U$ where

	Language	Polynomial
$R=B B B F B F B F B$	f^{3}	
$S=B F B B B F B F B$	f^{3}	
$T=B F B F B B B F B$	f^{3}	
$U=B F B F B F B B B$	f^{3}	

The sum of the polynomials of these 4 languages is $4 f^{3}$. We use the inclusionexclusion principle to determine the polynomial describing D_{2}

	Language	Polynomial
$R \cap S=$	$B B B B F B F B$	f^{2}
$R \cap T=B B B B B F B$	f	
$R \cap U=B B B F B B B$	f	
$S \cap T=B F B B B B F B$	f^{2}	
$S \cap U=B F B B B B B$	f	
$T \cap U=B F B F B B B B$	f^{2}	

The sum of the polynomials of these 6 languages is $3 f+3 f^{2}$.

	Language	Polynomial
$R \cap S \cap T=$	$B B B B B F B$	f
$S \cap T \cap U=$	$B F B B B B B$	f
$R \cap T \cap U=B B B B B B$	1	
$R \cap S \cap U=$	$B B B B B B$	1

The sum of the polynomials of these 4 languages is $2 f+2$.

$$
R \cap S \cap T \cap U=\begin{array}{cc}
\text { Language } & \text { Polynomial } \\
B B B B B B & 1
\end{array}
$$

The polynomial of this language is 1 .
The language D_{2} of words involving at least 3 consecutive $B \mathrm{~s}$ is described by the polynomial $4 f^{3}-\left(3 f+3 f^{2}\right)+(2 f+2)-1$, using the inclusion-exclusion principle.

The language $D_{2} \cup D_{3}$
$D_{2} \cap D_{3}$ is the union of the following four languages.

L	Language	Polynomial
$M B B G B F B G B$	$g^{2} f$	
M	$=B G B B B F B G B$	$g^{2} f$
N	$=B G B F B B B G B$	$g^{2} f$
0	$=B G B F B G B B B$	$g^{2} f$

The sum of the polynomials of these 4 languages is $4 g^{2} f$. We must calculate the polynomials associated with various intersections.

	Language	Polynomial
$L \cap M$	$=B B B B F B G B$	$g f$
$L \cap N$	$=B B B B B G B$	g
$L \cap O$	$=B B B G B B B$	g
$M \cap N=$	$B G B B B B G B$	g^{2}
$M \cap O=$	$B G B B B B B$	g
$N \cap O$	$=B G B F B B B B$	$g f$

The sum of the polynomials of these 6 languages is $3 g+2 g f+g^{2}$.

	Language	Polynomial
$L \cap M \cap N$	$=B B B B B G B$	g
$L \cap M \cap O$	$=B B B B B B B$	1
$L \cap N \cap O$	$=B B B B B B B$	1
$M \cap N \cap O$	$=B G B B B B B B$	g

The sum of the polynomials of these 4 languages is $2 g+2$.

$$
L \cap M \cap N \cap O=\begin{array}{cc}
\text { Language } & \text { Polynomial } \\
B B B B B B & 1 .
\end{array}
$$

The polynomial of this languages is 1 .
Thus $D_{2} \cap D_{3}$ is described by $4 g^{2} f-\left(g^{2}+2 g f+3 g\right)+(2 g+2)-1$.
We conclude that the inaccessible language $D_{2} \cup D_{3}$ is described by the polynomial
$4 f^{3}-\left(3 f+3 f^{2}\right)+(2 f+2)-1+g^{3} f^{2}-\left(4 g^{2} f-\left(g^{2}+2 g f+3 g\right)+(2 g+2)-1\right)$
which simplifies a little to yield

$$
4 f^{3}-f-3 f^{2}+g^{4} f^{3}-4 g^{2} f+g^{2}+2 g f+g
$$

Eight occurrences of B

In this section we will suppress the ever present factor b^{8}. Consider the three languages $E_{1}=B F B F B F B F B F B F B F B, E_{2}$ the language consisting of words containing three or more consecutive $B \mathrm{~s}$, and $E_{3}=B G B F B G B F B G B F B G B$. The polynomial describing E_{1} is f^{7} and that describing E_{3} is $g^{4} f^{3}$.

The language E_{2}

$E_{2}=R \cup S \cup T \cup U \cup V \cup W$ where

	Language	Polynomial
$R=B B B F B F B F B F B F B$	f^{5}	
S	$=B F B B B F B F B F B F B$	f^{5}
T	$=B F B F B B B F B F B F B$	f^{5}
U	$=B F B F B F B B B F B F B$	f^{5}
$V=B F B F B F B F B B B F B$	f^{5}	
W	$=B F B F B F B F B F B B B$	f^{5}

The sum of the polynomials of these 6 languages is $6 f^{5}$.
We must walk the inclusion-exclusion road. From now on, we may sometimes omit the full language description when it is clear.

	Language	Polynomial
$R \cap S=$	$B B B B F B F B F B F B$	f^{4}
$R \cap T=B B B B B F B F B F B$	f^{3}	
$R \cap U=B B B F B B B F B F B$	f^{3}	
$R \cap V=B B B F B F B B B F B$	f^{3}	
$R \cap W=B B B F B F B F B B B$	f^{3}	
$S \cap T=B F B B B B F B F B F B$	f^{4}	
$S \cap U=B F B B B B B F B F B$	f^{3}	
$S \cap V=B F B B B F B B B F B$	f^{3}	
$S \cap W=B F B B B F B F B B B$	f^{3}	
$T \cap U=B F B F B B B B F B F B$	f^{4}	
$T \cap V=B F B F B B B B B F B$	f^{3}	
$T \cap W=B F B F B B B F B B B$	f^{3}	
$U \cap V=B F B F B F B B B B F B$	f^{4}	
$U \cap W=B F B F B F B B B B B$	f^{3}	
$V \cap W=B F B F B F B F B B B B$	f^{4}	

The sum of the polynomials of these 15 languages is $5 f^{4}+10 f^{3}$.
From now on we may group together similar languages under the heading Siblings: often languages which are the reversals of one another.

	Language	Polynomial	Siblings
$R \cap S \cap T=$	$B B B B B F B F B F B$	f^{3}	4
$R \cap S \cap U=B=B B B B B F B F B$	f^{2}	6	
$R \cap S \cap V=B B B B F B B B F B$	f^{2}	4	
$R \cap T \cap V=B B B B B B B F B$	f	2	
$R \cap S \cap W=B B B B F B F B B B$	f^{2}	2	
$R \cap T \cap W=B B B B B F B B B$	f	2	

The sum of the polynomials of these 20 languages is $4 f^{3}+12 f^{2}+4 f$.

	Language	Polynomial	Siblings
$R \cap S \cap T \cap U$	$=B B B B B B F B F B$	f^{2}	3
$R \cap S \cap T \cap V$	$=B B B B B F B B B F B$	f^{2}	4
$R \cap S \cap T \cap W$	$=B B B B B F B F B B B$	f^{2}	2
$R \cap S \cap U \cap V$	$=B B B B B B B F B$	f	2
$R \cap S \cap U \cap W=B B B B B B B B$	1	2	
$R \cap S \cap V \cap W=B=B B B F B B B B$	f	1	
$R \cap T \cap U \cap W$	$=B B B B B B B B$	1	1

The sum of the polynomials of these 15 languages is $9 f^{2}+3 f+3$.

$$
\begin{array}{clccc}
& \text { Language } & \text { Polynomial } & \text { Siblin } \\
R \cap S \cap T \cap U \cap V & =B B B B B B B F B & f & 2 \\
4 \text { others } & =B B B B B B B B & 1 & 4
\end{array}
$$

The sum of the polynomials of these 6 languages is $2 f+4$.

$$
\text { All six }=\begin{aligned}
& \text { Language } \\
& B B B B B B B B
\end{aligned} \quad \text { Polynomial } \quad \text { Siblings }
$$

The polynomial of this language is 1 .
The polynomial describing this language is

$$
6 f^{5}-\left(5 f^{4}+10 f^{3}\right)+\left(4 f^{3}+12 f^{2}+4 f\right)-\left(9 f^{2}+3 f+3\right)+(2 f+4)-1
$$

The language $E_{2} \cup E_{3}$

We use an inclusion-exclusion argument, and express $E_{2} \cap E_{3}$ as the union of the following six languages.

L	Language	Polynomial
$M B B G B F B G B F B G B$	$g^{3} f^{2}$	
M	$=B G B B B F B G B F B G B$	$g^{3} f^{2}$
N	$=B G B F B B B G B F B G B$	$g^{3} f^{2}$
O	$=B G B F B G B B B F B G B$	$g^{3} f^{2}$
P	$=B G B F B G B F B B B G B$	$g^{3} f^{2}$
Q	$=B G B F B G B F B G B B B$	$g^{3} f^{2}$

The sum of the polynomials of these 6 languages is $6 g^{3} f^{2}$.

	Language	Polynomial	
$L \cap M$	$=B B B B F B G B F B G B$	$g^{2} f^{2}$	2
$M \cap N$	$=B G B B B B G B F B G B$	$g^{3} f$	2
$N \cap 0$	$=B G B F B B B B F B G B$	$g^{2} f^{2}$	1
others	$=$ various	$g^{2} f$	10

The sum of the polynomials describing these 15 languages is $10 g^{2} f+3 g^{2} f^{2}+2 g^{3} f$
Language Polynomial

$L \cap M \cap N$	$B B B B B G B F B G B$	$g^{2} f$	2
$M \cap N \cap 0$	$B G B B B B B F B G B$	$g^{2} f$	2
$L \cap M \cap 0$	$B B B B B B F B G B$	$g f$	2
$L \cap N \cap 0$	$B B B B B B F B G B$	$g f$	2
$M \cap N \cap P$	$B G B B B B B B G B$	g^{2}	2
$L \cap M \cap P$	$B B B B F B B B G B$	$g f$	2
$L \cap M \cap Q$	$B B B B F B G B B B$	$g f$	2
$L \cap O \cap P$	$B B B G B B B B G B$	g^{2}	2
$L \cap N \cap P$	$B B B B B B B G B$	g	2
$L \cap N \cap Q$	$B B B B B G B B B$	g	2

The sum of the polynomials describing these 20 languages is $4 g^{2} f+8 g f+4 g^{2}+4 g$.

	Language	Polynomial	
$L \cap M \cap N \cap 0$	$=B B B B B B F B G B$	$g f$	2
$M \cap N \cap 0 \cap P$	$=B G B B B B B B G B$	g^{2}	1
$L \cap M \cap N \cap P$	$=B B B B B B B G B$	g	8
$L \cap M \cap P \cap Q$	$=B B B B F B B B B$	f	1
$L \cap N \cap O \cap Q$	$=B B B B B B B B$	1	3

The sum of the polynomials describing these 15 languages is $2 g f+g^{2}+8 g+f+3$.

$$
\begin{array}{cllll}
L \cap M \cap N \cap O \cap P & =B B B B B B B G B & g & 2 \\
4 \text { others } & =B B B B B B B B & 1 & 4
\end{array}
$$

The sum of the polynomials describing these 6 languages is $2 g+4$.

$$
L \cap M \cap N \cap O \cap P \cap Q=B B B B B B B B \quad 1 \quad 1
$$

The polynomial of this language is 1 .
The polynomial describing the language $E_{2} \cap E_{3}$ is therefore

$$
\begin{gathered}
6 g^{3} f^{2}-\left(3 g^{2} f^{2}+2 g^{3} f+10 g^{2} f\right)+\left(4 g^{2} f+4 g^{2}+4 g+8 g f\right) \\
-\left(2 g f+f+g^{2}+8 g+3\right)+(2 g+4)-1
\end{gathered}
$$

The polynomial describing the (inaccessible) language $E_{2} \cup E_{3}$ is therefore

$$
\begin{gathered}
6 f^{5}-\left(5 f^{4}+10 f^{3}\right)+\left(4 f^{3}+12 f^{2}+4 f\right)-\left(9 f^{2}+3 f+3\right)+(2 f+4)-1+g^{4} f^{3} \\
-\left[\left(6 g^{3} f^{2}-\left(3 g^{2} f^{2}+2 g^{3} f+10 g^{2} f+\left(4 g^{2} f+4 g^{2}+4 g+8 g f\right)\right.\right.\right. \\
\left.-\left(2 g f+f+g^{2}+8 g+3\right)+(2 g+4)-1\right]
\end{gathered}
$$

The escargot polynomials and associated numbers

By truncating the polynomials we can focus on the case that the words in question have length no more than 30 . By evaluating w to be 1 , we count the words (we call these words strings). However, in the chemical application, we can allow for the 19 possible amino acids which may occur when a W is present by putting $w=19$ (we call these words sequences). We let e_{m} be the polynomial which enumerates all words satisfying conditions (i), (ii) and (iii) and involve m copies of B, and are truncated to allow for the total length ≤ 30 condition (the escargot polynomials). Let f_{m} be the polynomials of inaccessibility, which are defined in the same way, save that conditions (iv) and (v) are also imposed.

Four occurrences of B.

$$
\begin{gathered}
f_{4}=1+3 w+6 w^{2}+6 w^{3}+6 w^{4}+6 w^{5}+6 w^{6}+3 w^{7}+w^{8} \\
f_{4}(1)=38 \text { inaccessible strings of length at most } 30 \\
f_{4}(19)=19963135442 \text { inaccessible sequences of length at most } 30 . \\
e_{4}(w)=1+3 w+6 w^{2}+10 w^{3}+15 w^{4}+21 w^{5}+28 w^{6} \\
+33 w^{7}+36 w^{8}+37 w^{9}+36 w^{10}+33 w^{11}+28 w^{12}+21 w^{13} \\
+15 w^{14}+10 w^{15}+6 w^{16}+3 w^{17}+w^{18} \\
e_{4}(1)=343 \text { strings of length at most } 30
\end{gathered}
$$

$$
e_{4}(19)=122463904886205958677421 \text { sequences of length at most } 30
$$

Six occurrences of B.

$$
\begin{aligned}
& f_{6}=1+5 w+15 w^{2}+35 w^{3}+60 w^{4}+89 w^{5} \\
& +122 w^{6}+154 w^{7}+175 w^{8}+180 w^{9}+171 w^{10} \\
& +154 w^{11}+129 w^{12}+96 w^{13}+65 w^{14}+41 w^{15} \\
& +24 w^{16}+12 w^{17}+4 w^{18}
\end{aligned}
$$

$f_{6}(1)=1532$ inaccessible strings of length at most 30 .

$$
f_{6}(19)=489875340706634924622560
$$

inaccessible sequences of length at most 30 .

$$
\begin{gathered}
e_{6}=1+5 w+15 w^{2}+35 w^{3}+70 w^{4}+126 w^{5}+210 w^{6} \\
+325 w^{7}+470 w^{8}+640 w^{9}+826 w^{10}+1015 w^{11} \\
+1190 w^{12}+1330 w^{13}+1420 w^{14}+1451 w^{15} \\
+1420 w^{16}+1330 w^{17}+1190 w^{18}+1015 w^{19} \\
+826 w^{20}+640 w^{21}+470 w^{22}+325 w^{23}+210 w^{24} \\
e_{6}(1)=16555 \text { strings of length at most } 30 \\
e_{6}(19)=1119403018505084128111935530758381
\end{gathered}
$$

sequences of length at most 30 .

Eight occurrences of B

$$
\begin{gathered}
f_{8}=1+7 w+28 w^{2}+84 w^{3}+210 w^{4}+442 w^{5}+817 w^{6}+1371 w^{7} \\
+2125 w^{8}+3064 w^{9}+4129 w^{10}+5234 w^{11}+6290 w^{12}+7186 w^{13} \\
+7808 w^{14}+8081 w^{15}+7987 w^{16}+7550 w^{17}+6818 w^{18} \\
+5866 w^{19}+4805 w^{20}+3747 w^{21}+2771 w^{22}
\end{gathered}
$$

$f_{8}(1)=86421$ inaccessible strings of length at most 30.
Thus there are

$$
f_{8}(19)=40471537701497846906771178820797
$$

inaccessible sequences of length at most 30 .

$$
\begin{gathered}
e_{8}=1+7 w+28 w^{2}+84 w^{3}+210 w^{4}+462 w^{5}+924 w^{6}+1709 w^{7} \\
+2954 w^{8}+4809 w^{9}+7420 w^{10}+10906 w^{11}+15330 w^{12} \\
+20664 w^{13}+26769 w^{14}+33390 w^{15}+40166 w^{16}+46655 w^{17} \\
+52374 w^{18}+56854 w^{19}+59710 w^{20}+60691 w^{21}+59710 w^{22} \\
e_{8}(1)=501827 \text { strings of length at most } 30 \\
e_{8}(19)=855972319026576304079305969491905
\end{gathered}
$$

sequences of length at most 30 . Thus about 5% of the sequences are unaccessible.

