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Introduction

Let Σ = {B, W} be a two letter alphabet. Let Σ∗ denote the set of words
on this alphabet – that is to say finite sequences each entry of which is drawn
from the alphabet. The number of terms in a sequence is its length. Notice
that the number of words of length n is 2n since each of the n terms may be
chosen independently. The number of words involving exactly r copies of B and
s copies of W is (r + s)!/r!s!. This quantity is known as the binomial coefficient
(r+s

s ) and arises in algebra via

(x + y)n =
∑

r,s≥0
r+s=n

(r+s
s )xrys. (1)

where x and y are unknowns. These quantities (r+s
s ) also form the entries of

Pascal’s triangle where r + s is the row number and r indexes how far the entry
is from the left (and s from the right). Note that 0! = 1 in order to make
everything work smoothly. Putting x = y = 1 in (1) yields that there are 2n

words of length n, a fact which we have already noted. The numbers from
Pascal’s triangle crop up frequently when performing enumeration arguments.

We will need a fact about these binomial coefficients. Notice that

−1 + (m
1 ) − (m

2 ) + (m
3 ) . . . (−1)m(m

m) = 0 when m ≥ 1

because then −(1− 1)m = 0 and the binomial theorem applies. This really says
that if you add up the entries in any row of Pascal’s triangle (except the top
one), alternating the signs as you go, the answer is 0.

How big is a union of finitely many finite sets?

Suppose that you have two finite sets A and B. You can find the size of their
union using

|A ∪ B| = |A|+ |B| − |A ∩ B|
because when you work out |A|+ |B| the elements of |A∩B| are being ‘counted
twice’. You compensate for this by subtracting |A ∩ B|.
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Now suppose you have three finite sets. A very careful analysis of counting
will show you that

|A∪B ∪C| = |A|+ |B|+ |C| − |A∩B| − |A∩C| − |B ∩C|+ |A∩B ∩C|. (2)

What is going on here is that you first try |A|+|B|+|C| but this is wrong because
elements in A∩B, A∩C, and B∩C have been counted too much. You therefore
try to eliminate this over-counting by subtracting |A ∩ B| + |A ∩ C| + |B ∩ C|,
but then notice that elements of A ∩ B ∩ C have been ‘over removed’. You
compensate for this by adding |A ∩ B ∩ C| and all is well. We are edging
toward the inclusion-exclusion enumeration principle. Let is look at a concrete
example. Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6} and C = {2, 3, 4, 5, 6, 7}. Now (2)
says 7 = 4 + 4 + 6 − 2 − 3 − 4 + 2, which happily is true.

We prove validity of the Inclusion-Exclusion counting principle.
Theorem Suppose n ∈ N and Ai is a finite set for 1 ≤ i ≤ n. It follows that

∣∣∣∣∣∣

⋃

1≤i≤n

Ai

∣∣∣∣∣∣
=

∑

1≤i1≤n

|Ai1 | −
∑

1≤i1≤i2≤n

|Ai1 ∩Ai2 |

+
∑

1≤i1≤i2≤i3≤n

|Ai1 ∩ Ai2 ∩ Ai3 | − . . . + (−1)n+1

∣∣∣∣∣

n⋂

i=1

Ai

∣∣∣∣∣ .

Proof
Induct on | ∪i Ai|. If all Ai are empty, then the theorem holds, and the

induction starts without difficulty. Now focus on the case where | ∪i Ai| > 0.
Pick any x ∈ ∪iAi and form new sets by Bi = Ai \ {x} (i.e. remove x from all
the sets Ai which contain it). Now |∪i Bi| = |∪iAi|−1 so the theorem holds for
the sets Bi by induction. Now pop x back in to all sets from which you deleted
it. The re-insertion of x makes a contribution of +1 on the left hand side. On
the right, suppose x occurs in exactly m(≥ 1) of the Ai. The re-insertion of
x has the effect of adding exactly m − (m

2 ) + (m
3 ) . . . + (−1)m(m

m) to the right
hand side. However, we have prepared the ground in the previous section, so
we know that this quantity is 1. The induction step is complete, and thus the
inclusion-exclusion principle is valid.

Example Application 1

The Euler ϕ-function is ϕ : N→ N defined by

ϕ(n) = |{k | 1 ≤ k ≤ n, g.c.d.(k, n) = 1}| .
We have not made this function up. It is an important function in number
theory, combinatorics and algebra, and it has sweet properties. For example, if
a, b ∈ N and a, b are coprime (i.e. have 1 as their greatest common divisor), then
ϕ(ab) = ϕ(a)ϕ(b). In fact this follows immediately from the next proposition.
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Proposition Let the prime divisors of n be p1, p2, . . . , pk (without repetition).
It follows that

ϕ(n) = n

k∏

i=1

(1 − p−1
i ).

Proof The theorem is trivially true if n = 1, since the empty product is 1. Thus
we may assume n > 1, and thus k ≥ 1. For each i in the range 1 ≤ i ≤ k we put

Ai = {t | 1 ≤ t ≤ n, n/pi ∈ N}.
Here we have eschewed the vertical line notation pi | n deliberately in order to
avoid notational collision.

Notice that |Ai| = n/pi. Moreover, if i 6= j then |Ai ∩ Aj| = n/pipj and so
on. The inclusion-exclusion principle enables us to count the natural numbers
between 1 and n (inclusive) which are not coprime to n in two ways.

n − ϕ(n) = n
∑

i

1/pi − n
∑

i1<i2

n/pi1pi2 + . . . .

Rearrange, and a use a little algebra to obtain the result.

Example Application 2

Deal two packs of shuffled cards simultaneously. What is the probability that
no pair of identical cards will be exposed simultaneously?

Fix the first pack, and consider all possible rearrangements of the second
pack. For each i in the range 1 ≤ i ≤ 52 let Ai denote the set of all arrangements
of the second pack which happen to have the property that the card in position
i matches the card in position i of the first pack. Obviously |Ai| = 51! for
every i. Moreover, if i 6= j, then |Ai ∩ Aj | = 50! and so on. Let X = ∪iAi,
so the probability of at least one match is |X|/52!. We calculate this using the
inclusion-exclusion principle.

|X|/52! = (52!)−1
(
(52

1)51! − (52
2 )50! + (52

3 )49!− . . .− (52
52)0!

)

= 1 − 1/2! + 1/3!− . . .− 1/52! ≈ 1 − (
∞∑

i=0

(−1)i/i!) = 1 − 1/e.

Thus the probability of no coincidences is (to an excellent approximation) 1/e.
Here we have use the fact that

ex = 1 + x + x2/2! + . . . =
∞∑

i=0

xi/i!

and put x = −1.
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Enumerations related to snail venom.

We define a language L to be an arbitrary subset of Σ∗. Associated to a language
we have a power series pL in two variables b and w where

pL = pL(b, w) =
∞∑

n=0

∞∑

m=0

cmnbmwn

and cmn is the number of words in L which involve exactly m copies of the letter
B and n copies of the letter W.

(1) If the language L1 consists of all words which do not involve W then
cmn = 0 whenever n > 0, and cm0 = 1 for every m since there is exactly
one word in the language of length m involving no W. Thus the power
series is

pL1 =
∞∑

m=0

bm = (1 − b)−1.

(2) If the language L2 consists of all words in Σ∗ of length t where t is fixed,
then

pL2 =
∑

m,n≥0
n+m=t

t!
n!m!

bmcn.

If we further specify that t = 3 to give the language L̂2 we have

pL̂2
= b3w0 + 3b2w1 + 3b1w2 + b0w3 = b3 + 3b2w + 3bw2 + w3.

In this case the power series collapse to being a polynomial expression,
since all save a finite number of coefficients vanish. Notice that the coef-
ficients here are drawn from a row of Pascal’s triangle, and another way
of describing pL2 is (b + w)3. To understand this, think of + as being
“or” and multiplication (juxtaposition) as being “and then”. In this sense
(b + w)3 = (b + w)(b + w)(b + w) exactly describes the L̂2. Each word in
L̂2 is of the form: B or W, then B or W, then B or W.

(3) If the language L3 consists of all words where there are no juxtaposed W s
and no juxtaposed Bs then there is one word in L3 of length 0, the empty
word, and exactly two words of every other length. Thus

pL3 = 1 +
∞∑

n=0

bnwn+1 +
∞∑

n=0

bn+1wn +
∞∑

n=1

2bnwn.

The particular languages of interest in the investigation of snail venom are
the ones satisfying the following five conditions.
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(i) The words involve an even number of occurrences of B.

(ii) The words begin and end with a letter B.

(iii) Words must not contain the subword WWWWWWW.

(iv) Words must not contain the subword BBB (i.e. you must not have three
consecutive occurrences of B).

(v) Suppose a word involves exactly 2k occurrences of the letter B. Label
them from the left the 1st, 2nd, . . .2k-th. Between at least one (2i− 1)-th
and 2i-th occurrence of B, there must at least two consecutive occurrences
of W.

The language S specified by the first three conditions are all possible words
associated with snail venom. The language defined by all five these conditions
are the so-called inaccessible words, and are exactly those which do not admit
of synthesis by a specific manufacturing process.

The language S is defined by conditions (i), (ii) and (iii). Let f = (1 +w +
w2 + w3 + w4 + w5 + w6). The definition of pS yields that

pS = f + bfb + bfbfbfb + bfbfbfb + . . .

or more formally

pS =
∞∑

i=0

b2if2i−1

If you wish to see you many words there are in this language of length 30
and involving 8 occurrences of B (and so 22 occurrences of W ) you look at
the coefficient of b8w22 and this is precisely the coefficient of w22 in f7. This
can be determined in a trice by almost any computer algebra system (AXIOM,
MAPLE, REDUCE etc).

Now we proceed to the main calculation, where we also impose conditions
(iv) and (v), and are particularly interested in the cases where there are 4, 6
and 8 occurrences of B, and when the word lengths does not happen to exceed
30. This final constraint can be imposed at the very end of the calculations by
truncating the appropriate polynomial if necessary.

The Main Calculation

All these calculations are the same in spirit, but the details become a little more
complicated as we proceed.

We introduce a formal and compact way of describing languages. The letters
B and W stand for themselves. The letter G stands for either W or no letter,
the letter F stands for consecutive W s, somewhere between 0 and 6 in number.
We interpret ∪ to mean the union of languages.
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Four occurrences of B

Consider the three languages C1 = BFBFBFB, C2 = BBBFB ∪ BFBBB
and C3 = BGBFBGB. The language (of inaccessible words) we are interested
in is

C = (C2 ∪ C3) .

The polynomial for C1 is b4f3. C2 is described by b4(2f − 1) and C3 is
described by b4g2f. C2 ∩ C3 is described by b4(2g − 1). Thus the inaccessible
language C2 ∪ C3 is described by

b4(2f − 1 + g2f − (2g − 1)) = b4(2f + g2f − 2g).

Of course, since every single polynomial in this analysis involves the factor
b4, we could have suppressed it. We didn’t for expository reasons.

Six occurrences of B

In this section we will suppress the ever present factor b6. Consider the three
languages D1 = BFBFBFBFBFB, D2 the language consisting of words con-
taining three or more consecutive Bs, and D3 = BGBFBGBFBGB. The poly-
nomial describing D1 is f5 and that describing D3 is g3f2 .

The language D2

D2 = R ∪ S ∪ T ∪ U where

Language Polynomial
R = BBBFBFBFB f3

S = BFBBBFBFB f3

T = BFBFBBBFB f3

U = BFBFBFBBB f3

The sum of the polynomials of these 4 languages is 4f3. We use the inclusion-
exclusion principle to determine the polynomial describing D2

Language Polynomial
R ∩ S = BBBBFBFB f2

R ∩ T = BBBBBFB f
R ∩ U = BBBFBBB f
S ∩ T = BFBBBBFB f2

S ∩ U = BFBBBBB f
T ∩ U = BFBFBBBB f2

The sum of the polynomials of these 6 languages is 3f + 3f2.

Language Polynomial
R ∩ S ∩ T = BBBBBFB f
S ∩ T ∩ U = BFBBBBB f
R ∩ T ∩ U = BBBBBB 1
R ∩ S ∩ U = BBBBBB 1
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The sum of the polynomials of these 4 languages is 2f + 2.

Language Polynomial
R ∩ S ∩ T ∩ U = BBBBBB 1

The polynomial of this language is 1.
The language D2 of words involving at least 3 consecutive Bs is described

by the polynomial 4f3 − (3f +3f2)+ (2f +2)− 1, using the inclusion-exclusion
principle.

The language D2 ∪ D3

D2 ∩D3 is the union of the following four languages.

Language Polynomial
L = BBBGBFBGB g2f
M = BGBBBFBGB g2f
N = BGBFBBBGB g2f
0 = BGBFBGBBB g2f

.

The sum of the polynomials of these 4 languages is 4g2f. We must calculate
the polynomials associated with various intersections.

Language Polynomial
L ∩ M = BBBBFBGB gf
L ∩ N = BBBBBGB g
L ∩ O = BBBGBBB g
M ∩N = BGBBBBGB g2

M ∩ O = BGBBBBB g
N ∩ O = BGBFBBBB gf

The sum of the polynomials of these 6 languages is 3g + 2gf + g2.

Language Polynomial
L ∩ M ∩ N = BBBBBGB g
L ∩ M ∩ O = BBBBBBB 1
L ∩ N ∩ O = BBBBBBB 1
M ∩ N ∩ O = BGBBBBBB g

The sum of the polynomials of these 4 languages is 2g + 2.

Language Polynomial
L ∩ M ∩ N ∩ O = BBBBBB 1.

The polynomial of this languages is 1.
Thus D2 ∩ D3 is described by 4g2f − (g2 + 2gf + 3g) + (2g + 2) − 1.
We conclude that the inaccessible language D2 ∪ D3 is described by the

polynomial

7



4f3 − (3f + 3f2)+ (2f +2)− 1 + g3f2 − (4g2f − (g2 +2gf + 3g)+ (2g + 2)− 1)

which simplifies a little to yield

4f3 − f − 3f2 + g4f3 − 4g2f + g2 + 2gf + g.

Eight occurrences of B

In this section we will suppress the ever present factor b8. Consider the three lan-
guages E1 = BFBFBFBFBFBFBFB, E2 the language consisting of words
containing three or more consecutive Bs, and E3 = BGBFBGBFBGBFBGB.
The polynomial describing E1 is f7 and that describing E3 is g4f3 .

The language E2

E2 = R ∪ S ∪ T ∪ U ∪ V ∪ W where

Language Polynomial
R = BBBFBFBFBFBFB f5

S = BFBBBFBFBFBFB f5

T = BFBFBBBFBFBFB f5

U = BFBFBFBBBFBFB f5

V = BFBFBFBFBBBFB f5

W = BFBFBFBFBFBBB f5

The sum of the polynomials of these 6 languages is 6f5 .
We must walk the inclusion-exclusion road. From now on, we may sometimes

omit the full language description when it is clear.

Language Polynomial
R ∩ S = BBBBFBFBFBFB f4

R ∩ T = BBBBBFBFBFB f3

R ∩ U = BBBFBBBFBFB f3

R ∩ V = BBBFBFBBBFB f3

R ∩ W = BBBFBFBFBBB f3

S ∩ T = BFBBBBFBFBFB f4

S ∩ U = BFBBBBBFBFB f3

S ∩ V = BFBBBFBBBFB f3

S ∩ W = BFBBBFBFBBB f3

T ∩ U = BFBFBBBBFBFB f4

T ∩ V = BFBFBBBBBFB f3

T ∩ W = BFBFBBBFBBB f3

U ∩ V = BFBFBFBBBBFB f4

U ∩ W = BFBFBFBBBBB f3

V ∩ W = BFBFBFBFBBBB f4
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The sum of the polynomials of these 15 languages is 5f4 + 10f3.
From now on we may group together similar languages under the heading

Siblings: often languages which are the reversals of one another.

Language Polynomial Siblings
R ∩ S ∩ T = BBBBBFBFBFB f3 4
R ∩ S ∩ U = BBBBBBFBFB f2 6
R ∩ S ∩ V = BBBBFBBBFB f2 4
R ∩ T ∩ V = BBBBBBBFB f 2
R ∩ S ∩ W = BBBBFBFBBB f2 2
R ∩ T ∩ W = BBBBBFBBB f 2

The sum of the polynomials of these 20 languages is 4f3 + 12f2 + 4f.

Language Polynomial Siblings
R ∩ S ∩ T ∩ U = BBBBBBFBFB f2 3
R ∩ S ∩ T ∩ V = BBBBBFBBBFB f2 4
R ∩ S ∩ T ∩ W = BBBBBFBFBBB f2 2
R ∩ S ∩ U ∩ V = BBBBBBBFB f 2
R ∩ S ∩ U ∩ W = BBBBBBBB 1 2
R ∩ S ∩ V ∩ W = BBBBFBBBB f 1
R ∩ T ∩ U ∩ W = BBBBBBBB 1 1

The sum of the polynomials of these 15 languages is 9f2 + 3f + 3.

Language Polynomial Siblings
R ∩ S ∩ T ∩ U ∩ V = BBBBBBBFB f 2

4 others = BBBBBBBB 1 4

The sum of the polynomials of these 6 languages is 2f + 4.

Language Polynomial Siblings
All six = BBBBBBBB 1 1

The polynomial of this language is 1.
The polynomial describing this language is

6f5 − (5f4 + 10f3) + (4f3 + 12f2 + 4f) − (9f2 + 3f + 3) + (2f + 4) − 1

The language E2 ∪ E3

We use an inclusion-exclusion argument, and express E2 ∩ E3 as the union of
the following six languages.

Language Polynomial
L = BBBGBFBGBFBGB g3f2

M = BGBBBFBGBFBGB g3f2

N = BGBFBBBGBFBGB g3f2

O = BGBFBGBBBFBGB g3f2

P = BGBFBGBFBBBGB g3f2

Q = BGBFBGBFBGBBB g3f2

9



The sum of the polynomials of these 6 languages is 6g3f2 .

Language Polynomial
L ∩ M = BBBBFBGBFBGB g2f2 2
M ∩ N = BGBBBBGBFBGB g3f 2
N ∩ 0 = BGBFBBBBFBGB g2f2 1
others = various g2f 10

The sum of the polynomials describing these 15 languages is 10g2f+3g2f2+2g3f

Language Polynomial
L ∩ M ∩ N BBBBBGBFBGB g2f 2
M ∩ N ∩ 0 BGBBBBBFBGB g2f 2
L ∩ M ∩ 0 BBBBBBFBGB gf 2
L ∩ N ∩ 0 BBBBBBFBGB gf 2

M ∩ N ∩ P BGBBBBBBGB g2 2
L ∩ M ∩ P BBBBFBBBGB gf 2
L ∩ M ∩ Q BBBBFBGBBB gf 2
L ∩ O ∩ P BBBGBBBBGB g2 2
L ∩N ∩ P BBBBBBBGB g 2
L ∩ N ∩ Q BBBBBGBBB g 2

The sum of the polynomials describing these 20 languages is 4g2f+8gf+4g2+4g.

Language Polynomial
L ∩ M ∩N ∩ 0 = BBBBBBFBGB gf 2
M ∩ N ∩ 0 ∩ P = BGBBBBBBGB g2 1
L ∩ M ∩ N ∩ P = BBBBBBBGB g 8
L ∩ M ∩ P ∩ Q = BBBBFBBBB f 1
L ∩ N ∩ O ∩Q = BBBBBBBB 1 3

The sum of the polynomials describing these 15 languages is 2gf+g2+8g+f+3.

L ∩ M ∩ N ∩ O ∩ P = BBBBBBBGB g 2
4 others = BBBBBBBB 1 4

The sum of the polynomials describing these 6 languages is 2g + 4.

L ∩ M ∩ N ∩ O ∩ P ∩ Q = BBBBBBBB 1 1

The polynomial of this language is 1.
The polynomial describing the language E2 ∩ E3 is therefore

6g3f2 − (3g2f2 + 2g3f + 10g2f) + (4g2f + 4g2 + 4g + 8gf)

−(2gf + f + g2 + 8g + 3) + (2g + 4) − 1

The polynomial describing the (inaccessible) language E2 ∪ E3 is therefore

6f5 − (5f4 + 10f3) + (4f3 + 12f2 + 4f) − (9f2 + 3f + 3) + (2f + 4) − 1 + g4f3

− [
(6g3f2 − (3g2f2 + 2g3f + 10g2f + (4g2f + 4g2 + 4g + 8gf)

−(2gf + f + g2 + 8g + 3) + (2g + 4) − 1
]
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The escargot polynomials and associated num-
bers

By truncating the polynomials we can focus on the case that the words in
question have length no more than 30. By evaluating w to be 1, we count the
words (we call these words strings). However, in the chemical application, we
can allow for the 19 possible amino acids which may occur when a W is present
by putting w = 19 (we call these words sequences). We let em be the polynomial
which enumerates all words satisfying conditions (i), (ii) and (iii) and involve
m copies of B, and are truncated to allow for the total length ≤ 30 condition
(the escargot polynomials). Let fm be the polynomials of inaccessibility, which
are defined in the same way, save that conditions (iv) and (v) are also imposed.

Four occurrences of B.

f4 = 1 + 3 w + 6 w2 + 6 w3 + 6 w4 + 6 w5 + 6 w6 + 3 w7 + w8

f4(1) = 38 inaccessible strings of length at most 30.

f4(19) = 19963135442 inaccessible sequences of length at most 30.

e4(w) = 1 + 3 w + 6 w2 + 10 w3 + 15 w4 + 21 w5 + 28 w6

+33 w7 + 36 w8 + 37 w9 + 36 w10 + 33 w11 + 28 w12 + 21 w13

+15 w14 + 10 w15 + 6 w16 + 3 w17 + w18

e4(1) = 343 strings of length at most 30.

e4(19) = 122463904886205958677421 sequences of length at most 30.

Six occurrences of B.

f6 = 1 + 5 w + 15 w2 + 35 w3 + 60 w4 + 89 w5

+122 w6 + 154 w7 + 175 w8 + 180 w9 + 171 w10

+154 w11 + 129 w12 + 96 w13 + 65 w14 + 41 w15

+24 w16 + 12 w17 + 4 w18

f6(1) = 1532 inaccessible strings of length at most 30.

f6(19) = 489875340706634924622560

inaccessible sequences of length at most 30.
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e6 = 1 + 5 w + 15 w2 + 35 w3 + 70 w4 + 126 w5 + 210 w6

+325 w7 + 470 w8 + 640 w9 + 826 w10 + 1015 w11

+1190 w12 + 1330 w13 + 1420 w14 + 1451 w15

+1420 w16 + 1330 w17 + 1190 w18 + 1015 w19

+826 w20 + 640 w21 + 470 w22 + 325 w23 + 210 w24

e6(1) = 16555 strings of length at most 30.

e6(19) = 1119403018505084128111935530758381

sequences of length at most 30.

Eight occurrences of B

f8 = 1 + 7 w + 28 w2 + 84 w3 + 210 w4 + 442 w5 + 817 w6 + 1371 w7

+2125 w8 + 3064 w9 + 4129 w10 + 5234 w11 + 6290 w12 + 7186 w13

+7808 w14 + 8081 w15 + 7987 w16 + 7550 w17 + 6818 w18

+5866 w19 + 4805 w20 + 3747 w21 + 2771 w22

f8(1) = 86421 inaccessible strings of length at most 30.

Thus there are

f8(19) = 40471537701497846906771178820797

inaccessible sequences of length at most 30.

e8 = 1 + 7 w + 28 w2 + 84 w3 + 210 w4 + 462 w5 + 924 w6 + 1709 w7

+2954 w8 + 4809 w9 + 7420 w10 + 10906 w11 + 15330 w12

+20664 w13 + 26769 w14 + 33390 w15 + 40166 w16 + 46655 w17

+52374 w18 + 56854 w19 + 59710 w20 + 60691 w21 + 59710 w22

e8(1) = 501827 strings of length at most 30.

e8(19) = 855972319026576304079305969491905

sequences of length at most 30. Thus about 5% of the sequences are unaccessible.
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