October 2004 Exam 1 Outline Solutions

November 13, 2004

1. We are given a family of disks in the plane, with pairwise disjoint interiors. Each disk is tangent to at least six other disks of the family. Show that the family is infinite.

Solution 1 Suppose that the family is finite. Let $D(O, r)$ be a smallest disk in the family, and let $D\left(O_{i}, r_{i}\right), i=1, \ldots, 6$ be six disks in the family tangent to $D(O, r)$, numbered so that O_{1}, \ldots, O_{6} are in that cyclic order around O. Since $D(O, r)$ is a smallest disk, $r_{i}, r_{i+1} \geq r$, for each $i=1, \ldots, 6\left(\right.$ taking $\left.O_{7}=O_{1}, r_{7}=r_{1}\right)$. So
$O O_{i}=r+r_{i}, \quad O O_{i+1}=r+r_{i+1}, \quad O_{i} O_{i+1} \geq r_{i}+r_{i+1} \geq O O_{i}, O O_{i+1}$.
So in triangle $O O_{i} O_{i+1}$ no side is longer than $O_{i} O_{i+1}$. This implies that $\angle O_{i} O O_{i+1} \geq 60^{\circ}$. Equality occurs iff $r=r_{i}=r_{i+1}$ and $D\left(O_{i}, r_{i}\right)$ and $D\left(O_{i}, r_{i+1}\right)$ are tangent. Since $\angle O_{1} O O_{2}+\angle O_{2} O O_{3}+\cdots+\angle O_{6} O O_{1}=$ 360°, for each i we must have $\angle O_{i} O O_{i+1}=60^{\circ}$ and $r=r_{i}$. That is, $D(O, r)$ is surrounded by six disks of radius r, tangent in a cycle. Likewise, each of these disks is surrounded by six disks of radius r and so on. So the family contains every disk in an infinite close-packed lattice of disks of radius r, a contradiction.

Solution 2 (Martin Orr, Konrad Dabrowski) Euler's Formula states: If a connected planar graph G has V vertices, E edges and F faces (in some planar embedding), then $V-E+F=2$. As long as $V \geq 3$, each face of (any embedding of) G is bounded by at least 3 edges, and each edge lies in at most two faces, so $F \leq 2 E / 3$. In Euler's formula this implies that $E \leq 3 V-6$. In particular, the average degree $2 E / V$ of any planar graph is less than 6.

In this problem, define a graph H whose vertices are the disks, and in which two vertices form an edge if and only if the corresponding disks are tangent. The graph H is planar - an embedding of it in the plane is obtained by placing a vertex at the centre of each disk, and joining the centres of tangent disks by a straight line segment. So the average degree of H must be less than 6 ; a contradiction, since each disk is tangent to at least 6 others.
2. Determine all function defined on the positive reals and taking real values which satisfy

$$
f(x+y)=f\left(x^{2}+y^{2}\right) \text { for all } x, y \in \mathbb{R} \text { such that } x+y>0 .
$$

Solution (William Laffan) We shall show that the only possibilities are constant functions, $f \equiv c$ for some $c \in \mathbb{R}$. Indeed, suppose a, b are two positive real numbers:

$$
\begin{aligned}
& (x, y)=((a+b) / 2,(a-b) / 2) \quad \Longrightarrow \quad f(a)=f\left(\left(a^{2}+b^{2}\right) / 2\right) \\
& (x, y)=((a+b) / 2,(b-a) / 2) \quad \Longrightarrow \quad f(b)=f\left(\left(a^{2}+b^{2}\right) / 2\right)
\end{aligned}
$$

So $f(a)=f(b)$, and f is constant. Finally, if $c \in \mathbb{R}$, the function $f(x)=c \forall x$ does satisfy the conditions of the problem.
3. Let a and b be integers. Is it possible to find integers p and q such that $p+n a$ and $q+n b$ are coprime for all integers n ?

Solution It is always possible to find such integers p, q. If $a=b=0$ we may take $p=q=1$. Suppose then that $(a, b) \neq(0,0)$. Let $(a, b)=h$, and set $a=a^{\prime} h, b=b^{\prime} h$. The integers a^{\prime} and b^{\prime} are coprime, so there are integers p and q such that $b^{\prime} p-a^{\prime} q=1$. And now for these p, q and any $n \in \mathbb{Z}$ we have

$$
b^{\prime}(p+n a)-a^{\prime}(q+n b)=\left(b^{\prime} p-a^{\prime} q\right)+\left(b^{\prime} n a^{\prime} h-a^{\prime} n b^{\prime} h\right)=1 .
$$

So $p+n a$ and $q+n b$ are coprime.

