October 2004 Exam 1 Outline Solutions

November 13, 2004

1. We are given a family of disks in the plane, with pairwise disjoint interiors. Each disk is tangent to at least six other disks of the family. Show that the family is infinite.

Solution 1 Suppose that the family is finite. Let D(O, r) be a smallest disk in the family, and let $D(O_i, r_i)$, i = 1, ..., 6 be six disks in the family tangent to D(O, r), numbered so that $O_1, ..., O_6$ are in that cyclic order around O. Since D(O, r) is a smallest disk, $r_i, r_{i+1} \ge r$, for each i = 1, ..., 6 (taking $O_7 = O_1, r_7 = r_1$). So

$$OO_i = r + r_i, \quad OO_{i+1} = r + r_{i+1}, \quad O_i O_{i+1} \ge r_i + r_{i+1} \ge OO_i, OO_{i+1}.$$

So in triangle OO_iO_{i+1} no side is longer than O_iO_{i+1} . This implies that $\angle O_iOO_{i+1} \ge 60^\circ$. Equality occurs iff $r = r_i = r_{i+1}$ and $D(O_i, r_i)$ and $D(O_i, r_{i+1})$ are tangent. Since $\angle O_1OO_2 + \angle O_2OO_3 + \cdots + \angle O_6OO_1 = 360^\circ$, for each *i* we must have $\angle O_iOO_{i+1} = 60^\circ$ and $r = r_i$. That is, D(O, r) is surrounded by six disks of radius *r*, tangent in a cycle. Likewise, each of these disks is surrounded by six disks of radius *r* and so on. So the family contains every disk in an infinite close-packed lattice of disks of radius *r*, a contradiction.

Solution 2 (Martin Orr, Konrad Dabrowski) Euler's Formula states: If a connected planar graph G has V vertices, E edges and Ffaces (in some planar embedding), then V - E + F = 2. As long as $V \ge 3$, each face of (any embedding of) G is bounded by at least 3 edges, and each edge lies in at most two faces, so $F \le 2E/3$. In Euler's formula this implies that $E \le 3V - 6$. In particular, the average degree 2E/V of any planar graph is less than 6. In this problem, define a graph H whose vertices are the disks, and in which two vertices form an edge if and only if the corresponding disks are tangent. The graph H is planar – an embedding of it in the plane is obtained by placing a vertex at the centre of each disk, and joining the centres of tangent disks by a straight line segment. So the average degree of H must be less than 6; a contradiction, since each disk is tangent to at least 6 others.

2. Determine all function defined on the positive reals and taking real values which satisfy

$$f(x+y) = f(x^2+y^2)$$
 for all $x, y \in \mathbb{R}$ such that $x+y > 0$.

Solution (William Laffan) We shall show that the only possibilities are constant functions, $f \equiv c$ for some $c \in \mathbb{R}$. Indeed, suppose a, b are two positive real numbers:

$$(x,y) = ((a+b)/2, (a-b)/2) \implies f(a) = f((a^2+b^2)/2) (x,y) = ((a+b)/2, (b-a)/2) \implies f(b) = f((a^2+b^2)/2)$$

So f(a) = f(b), and f is constant. Finally, if $c \in \mathbb{R}$, the function $f(x) = c \forall x$ does satisfy the conditions of the problem.

3. Let a and b be integers. Is it possible to find integers p and q such that p + na and q + nb are coprime for all integers n?

Solution It is always possible to find such integers p, q. If a = b = 0 we may take p = q = 1. Suppose then that $(a, b) \neq (0, 0)$. Let (a, b) = h, and set a = a'h, b = b'h. The integers a' and b' are coprime, so there are integers p and q such that b'p - a'q = 1. And now for these p, q and any $n \in \mathbb{Z}$ we have

$$b'(p+na) - a'(q+nb) = (b'p - a'q) + (b'na'h - a'nb'h) = 1.$$

So p + na and q + nb are coprime.