October 2004 Exam 2 Outline Solutions

November 13, 2004

1. Find the smallest positive integer n such that
(a) n has exactly 144 distinct positive divisors and
(b) there are 10 consecutive positive integers among the divisors of n.

Solution Among any 10 consecutive positive integers, at least one is divisible by 8 , at least one by 9 , at least one by 5 , and at least one by 7. So if there are 10 consecutive positive integers among the divisors of n, then n is divisible by $k=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$. Conversely, any positive integer divisible by k has 10 consecutive integer divisors - namely $1,2, \ldots, 10$. Now if the prime factorization of n is $n=2^{\alpha_{1}} 3^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ the number of divisors of n (usually denoted $d(n)$ in the literature) is given by $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)$. In our case, if n had more than 5 distinct prime factors, we'd have $d(n) \geq 4 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2=192$. So n has at most 5 distinct prime factors; and since we seek the smallest n satisfying the conditions in the question, if n has a fifth prime factor (after $2,3,5,7$), then it is 11 . There are now a few case to check. We know that $n=2^{\alpha_{1}} 3^{\alpha_{2}} 5^{\alpha_{3}} 7^{\alpha_{4}} 11^{\alpha_{5}}$, where $\alpha_{1} \geq 3$, $\alpha_{2} \geq 2, \alpha_{3} \geq 1$ and $\alpha_{4} \geq 1, \alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \alpha_{4} \geq \alpha_{5}$ and $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right)\left(\alpha_{4}+1\right)\left(\alpha_{5}+1\right)=144$. These imply that $\alpha_{1} \leq 11$, leaving the following possibilities (in a complete solution you should use the conditions above to show carefully that these are the only possibilities):

$$
\begin{array}{rll}
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(11,2,1,1,0) & \rightarrow \quad n=256 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(8,3,1,1,0) & \rightarrow \quad n=96 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(7,2,2,1,0) & \rightarrow \quad n=80 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(5,2,1,1,1) & \rightarrow & n=44 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(5,3,2,1,0) & \rightarrow & n=60 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(5,5,1,1,0) & \rightarrow & n=108 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(3,2,2,1,1) & \rightarrow & n=55 k \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)=(3,3,2,2,0) & \rightarrow & n=105 k
\end{array}
$$

So the smallest is $n=2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11=110880$.
2. We are given six straight lines in space. Among any collection of three of those lines, at least one pair is perpendicular. Show that the given lines can be labelled $l_{1}, l_{2}, \ldots, l_{6}$ in such a way that l_{1}, l_{2}, l_{3} are pairwise perpendicular, and l_{4}, l_{5}, l_{6} are pairwise perpendicular.

Solution (Adam Bull) You may need some coloured pens to follow this solution properly. Define a graph G with vertices $v_{1}, v_{2}, \ldots, v_{6}$. Vertices v_{i} and v_{j} are joined by a blue edge if l_{i} and l_{j} are perpendicular, and by a red edge if l_{i} and l_{j} are not perpendicular. Since the Ramsey number $R(3)$ is 6 , the graph G contains a monochromatic triangle. Because some two of any three lines are perpendicular, there is no red triangle, so there must be a blue triangle. Wlog wma v_{1}, v_{2}, v_{3} are the vertices of a blue triangle. If $v_{4} v_{5} v_{6}$ is also a blue triangle, we are done. Suppose then that this is not the case. Wlog wma $v_{4} v_{5}$ is red. Now each of the triangles $v_{1} v_{4} v_{5}, v_{2} v_{4} v_{5}, v_{3} v_{4} v_{5}$ contains at least one blue edge. So at least one of the vertices v_{4} and v_{5} is joined by blue edges to at least two of v_{1}, v_{2}, v_{3}. Wlog wma v_{4} is joined by blued edges to v_{1} and v_{2}. The lines l_{1} and l_{2} are perpendicular. So the lines l_{3} and l_{4} (each of which is perpendicular to both l_{1} and l_{2}) are parallel. So the edge $v_{3} v_{4}$ is red. Also, the fact that $v_{4} v_{5}$ is red and that l_{4} is parallel to l_{3} imply that $v_{3} v_{5}$ is red. So now $v_{3} v_{4} v_{5}$ is a red triangle. This is a contradiction.
3. Find the greatest possible value of the expression

$$
(a+b)^{4}+(a+c)^{4}+(a+d)^{4}+(b+c)^{4}+(b+d)^{4}+(c+d)^{4}
$$

given that the real numbers a, b, c and d satisfy

$$
a^{2}+b^{2}+c^{2}+d^{2} \leq 1
$$

Solution By multiplying expressions out, it is easy to check that

$$
(a+b)^{4}+(a+c)^{4}+(a+d)^{4}+(b+c)^{4}+(b+d)^{4}+(c+d)^{4}
$$

is equal to
$6\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}-\left\{(a-b)^{4}+(a-c)^{4}+(a-d)^{4}+(b-c)^{4}+(b-d)^{4}+(c-d)^{4}\right\}$.
Therefore

$$
(a+b)^{4}+(a+c)^{4}+(a+d)^{4}+(b+c)^{4}+(b+d)^{4}+(c+d)^{4} \leq 6
$$

with equality if and only if $a=b=c=d=1 / 2$.

