# UK IMO Squad, December 2004 

Exam 2

4 hours and 30 minutes

Please bring your script with you to Heathrow Airport if you are travelling to Budapest. If not, please post your solution to Dr G C Smith, UK IMO Squad December Exam, Department of Mathematics, University of Bath, Claverton Down, Bath BA2 7AY by the end of 2004.

1. An "infinite chessboard" has finitely many of its $1 \times 1$ squares coloured black. The rest are white. Prove that it is possible to select a finite number of squares (with edges coincident with sides of the given $1 \times 1$ squares) such that each of the following conditions is satisfied.
(a) The interiors of different squares are disjoint.
(b) Every black square is contained in a selected square.
(c) The number of black $1 \times 1$ squares in each selected square is at least $\frac{1}{5}$, and at most $\frac{4}{5}$ of the total number of $1 \times 1$ squares in the square.
2. Prove that there is no integer $n>1$ such that $n$ divides $3^{n}-2^{n}$.
3. The edge $S A$ of the tetrahedron $S A B C$ is perpendicular to the plane of $\triangle A B C$. Two different spheres $\sigma_{1}$ and $\sigma_{2}$ each pass through $A, B$ and $C$ and are internally tangent to a sphere $\sigma$ with centre $S$. The radii of $\sigma_{1}$ and $\sigma_{2}$ are $r_{1}$ and $r_{2}$, respectively. Determine the radius of $\sigma$.
