UK IMO Squad, December 2004

Exam 2

4 hours and 30 minutes

Please bring your script with you to Heathrow Airport if you are travelling to Budapest. If not, please post your solution to Dr G C Smith, UK IMO Squad December Exam, Department of Mathematics, University of Bath, Claverton Down, Bath BA2 7AY by the end of 2004.

- 1. An "infinite chessboard" has finitely many of its 1×1 squares coloured black. The rest are white. Prove that it is possible to select a finite number of squares (with edges coincident with sides of the given 1×1 squares) such that each of the following conditions is satisfied.
 - (a) The interiors of different squares are disjoint.
 - (b) Every black square is contained in a selected square.
 - (c) The number of black 1×1 squares in each selected square is at least $\frac{1}{5}$, and at most $\frac{4}{5}$ of the total number of 1×1 squares in the square.
- 2. Prove that there is no integer n > 1 such that n divides $3^n 2^n$.
- 3. The edge SA of the tetrahedron SABC is perpendicular to the plane of $\triangle ABC$. Two different spheres σ_1 and σ_2 each pass through A, B and C and are internally tangent to a sphere σ with centre S. The radii of σ_1 and σ_2 are r_1 and r_2 , respectively. Determine the radius of σ .