November Exam 2

1. Prove that the equation

$$
\frac{x^{2000}-1}{x-1}=y^{2}
$$

has no solutions in integers $x, y \geq 2$.
2. Let n be a positive integer. A corner is a finite set C of ordered n tuples of positive integers such that if $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are positive integers with $a_{k} \geq b_{k}$ for $k=1,2, \ldots, n$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in$ C, then $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in C$. Prove that among any infinite collection S of corners there exist two corners, one of which is a subset of the other one.
3. In \mathbb{R}^{3} a circle Γ is tangent to each of the three planes $P_{x}=\{(0, y, z)$: $y, z \in \mathbb{R}\}, P_{y}=\{(x, 0, z): x, z \in \mathbb{R}\}$ and $P_{z}=\{(x, y, 0): x, y \in \mathbb{R}\}$. What is the set of possible locations for the centre of Γ ?

Solutions should be sent to Adrian Sanders, Trinity College, Cambridge CB2 $1 T Q$ for receipt on or before Wednesday 24 November.

