1. For which integers n does there exist a polynomial with integer coefficients with $p(1)=7$ and $p(8)=n$?
2. Suppose $P(x)=a x^{2}+b x+c$ is a quadratic with nonnegative real coefficients. Show that, for any positive real x,

$$
P(x) P\left(x^{-1}\right) \geq(P(1))^{2}
$$

3. Determine all pairs (a, b) of integers such that

$$
\left(a^{3}+b\right)\left(a+b^{3}\right)=(a+b)^{4}
$$

4. Let \mathbb{R}^{+}denote the set of all strictly positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that for all pairs (x, y) of positive reals, we have that

$$
x^{2}(f(x)+f(y))=(x+y) f(f(x) y)
$$

5. Prove that the equation

$$
x^{2}+y^{2}+z^{2}+w^{2}=2^{2004}
$$

has exactly two solutions in the set of integers.
6. Let n be a positive integer, and let z_{1}, \ldots, z_{n} and w_{1}, \ldots, w_{n} be complex numbers such that for every choice of $\epsilon_{1}, \ldots, \epsilon_{n}$ from the set $-1,1$ we have that

$$
\left|\epsilon_{1} z_{1}+\cdots+\epsilon_{n} z_{n}\right| \leq\left|\epsilon_{1} w_{1}+\cdots+\epsilon_{n} w_{n}\right|
$$

Prove that

$$
\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2} \leq\left|w_{1}\right|^{2}+\cdots+\left|w_{n}\right|^{2}
$$

7. Find all non-negative integers k such that we can find non-negative integers a and b with $a b \neq 1$ such that

$$
\frac{a^{2}+a b+b^{2}}{a b-1}=k
$$

8. We have a square $A B C D$ lying inside a circle γ. We construct a circle γ_{A} as follows: γ_{A} lies inside the angle opposite to $\angle B A D$, and is tangent to $\gamma, A D$ produced, and $A B$ produced. (So γ_{A} lies entirely outside the square $A B C D$.) Let A_{1} be the point of tangency of γ_{A} and γ. Define B_{1}, C_{1}, D_{1} similarly. Show that $A A_{1}, B B_{1}, C C_{1}$ and $D D_{1}$ are concurrent.
9. Let a, b, c be integers with b odd. Consider the sequence $\left(x_{n}\right)$ satisfying $x_{0}=4, x_{1}=$ $0, x_{2}=2 c, x_{3}=3 b$ and

$$
x_{n}=a x_{n-4}+b x_{n-3}+c x_{n-2} \quad \text { for } n \geq 4
$$

Show that for p prime and m an integer, we have $x_{p^{m}}$ is divisible by p.

