October 2005 UK IMO Exam 1

4 hours 30 minutes

1. Find all nondecreasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(a) $f(0)=0, f(1)=1$;
(b) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.
2. Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and Γ_{4} be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C and D, and that these points are different from P.
Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

3. Each positive integer a (written in base 10 notation) undergoes the following procedure in order to obtain the number $d=d(a)$:
(a) move the last digit of a to the first position to obtain the number b;
(b) square b to obtain the number c;
(c) move the first digit of c to the end to obtain the number d.
(For example, for $a=2003$, we get $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.)
Find all numbers a for which $d(a)=a^{2}$.
