October 2005 UK IMO Exam 2

4 hours 30 minutes

1. Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i} & \text { if } 0 \leq i \leq m-1 ; \\ \sum_{j=1}^{m} x_{i-j} & \text { if } i \geq m .\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.
2. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix with entries 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.
3. Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of triangle $A B C$.

