MATHEMATICS 2 (MA10193)

EXAMPLES SHEET 1: SOLUTIONS

1. We have

$$
A A^{T}=\left(\begin{array}{cc}
\cos w & p \\
\sin w & q
\end{array}\right)\left(\begin{array}{cc}
\cos w & \sin w \\
p & q
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} w+p^{2} & \cos w \sin w+p q \\
\sin w \cos w+q p & \sin ^{2} w+q^{2}
\end{array}\right)
$$

This is supposed to be equal to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so $\cos ^{2} w+p^{2}=1=\cos ^{2} w+\sin ^{2} w, \sin ^{2} w+q^{2}=$ 1 , and $\cos w \sin w+p q=0$. Therefore $p= \pm \sin w, q= \pm \cos w$ and the signs have to be opposite. So we get two possible solutions: $p=\sin w, q=-\cos w$ or $p=-\sin w, q=\cos w$.
2. We have

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & -1 \\
3 & 2 & 1 & -2 \\
0 & 2 & 1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
2 & 3 \\
-1 & 2 \\
3 & 0 \\
1 & 1
\end{array}\right)
$$

so

$$
A^{T}=\left(\begin{array}{ccc}
1 & 3 & 0 \\
1 & 2 & 2 \\
2 & 1 & 1 \\
-1 & -2 & 1
\end{array}\right) \text { and } B^{T}=\left(\begin{array}{cccc}
2 & -1 & 3 & 1 \\
3 & 2 & 0 & 1
\end{array}\right)
$$

This gives

$$
A B=\left(\begin{array}{cc}
6 & 4 \\
5 & 11 \\
2 & 5
\end{array}\right) \text { and } B^{T} A^{T}=\left(\begin{array}{ccc}
6 & 5 & 2 \\
4 & 11 & 5
\end{array}\right)
$$

3. $(A+B)^{2}=A^{2}+A B+B A+B^{2}\left(\right.$ not $\left.A^{2}+2 A B+B^{2}\right)$. If

$$
A=\left(\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right)
$$

then

$$
A+B=\left(\begin{array}{ll}
4 & 2 \\
4 & 3
\end{array}\right), \quad(A+B)^{2}=\left(\begin{array}{ll}
4 & 2 \\
4 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 2 \\
4 & 3
\end{array}\right)=\left(\begin{array}{ll}
24 & 14 \\
28 & 17
\end{array}\right)
$$

and

$$
A^{2}=\left(\begin{array}{cc}
1 & -4 \\
12 & 1
\end{array}\right), \quad A B=\left(\begin{array}{cc}
3 & 5 \\
8 & 11
\end{array}\right), \quad B A=\left(\begin{array}{cc}
13 & 4 \\
5 & 1
\end{array}\right), \quad B^{2}=\left(\begin{array}{ll}
7 & 0 \\
3 & 4
\end{array}\right)
$$

and adding up all of these gives $\left(\begin{array}{cc}24 & 14 \\ 28 & 17\end{array}\right)$.
4. In this case, A and B are symmetric, so $A^{T}=A$ and $B^{T}=B$. If $A B$ is symmetric as well, then we have $B A=B^{T} A^{T}=(A B)^{T}=A B$, so it is true that $A B=B A$ if A, B and $A B$ are all symmetric.
In this particular case we multiply the matrices and get

$$
A B=\left(\begin{array}{ccc}
3-3 x+z & -6+2 x & z-3 x+1 \\
3 x-6+y z & 4-3 x-3 y & x z-6+y \\
3-3 y+3 z & -12+2 y & z-3 y+3
\end{array}\right)
$$

so if this is symmetric we have

$$
\begin{aligned}
3 x-6+y z & =-6+2 x \\
z-3 x+1 & =3-3 y+3 z \\
x z-6+y & =-12+2 y
\end{aligned}
$$

So $x=-y z$ from the first equation, and $y-x z=6$ from the third equation so $y+y z^{2}=6$. Hence $y=\frac{6}{z^{2}+1}$ and $x=\frac{-6 z}{z^{2}+1}$. The second equation says $3 x-3 y+2 z=-2$, so we substitute the expressions we have fouund for x and y and then multiply by $z^{2}+1$:

$$
3\left(\frac{-6 z}{z^{2}+1}\right)-3\left(\frac{6}{z^{2}+1}\right)+2 z=-2
$$

so

$$
-18 z-18+2 z\left(z^{2}+1\right)=-2\left(z^{2}+1\right)
$$

i.e. $2 z^{3}+2 z^{2}-16 z-16=0$. One solution to this is $z=-1$: in fact it says $\left(2(z+1)\left(z^{2}-8\right)=\right.$ 0 so the solutions are $z=-1$ or $z= \pm \sqrt{8}= \pm 2 \sqrt{2}$. So there are three possible solutions: $z=-1, x=3$ and $y=3$; or $z=2 \sqrt{2}, x=4 \sqrt{2} / 3$ and $y=2 / 3$; or $z=-2 \sqrt{2}, x=-4 \sqrt{2} / 3$ and $y=2 / 3$.
5. We can write $B=\left(B+B^{T}\right) / 2+\left(B-B^{T}\right) / 2$, i.e.

$$
B=\left(\begin{array}{ccc}
4 & \frac{3}{2} & \frac{1}{2} \\
\frac{3}{2} & -1 & \frac{5}{2} \\
\frac{1}{2} & \frac{5}{2} & 1
\end{array}\right)+\left(\begin{array}{ccc}
0 & \frac{-1}{2} & \frac{-5}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{5}{2} & \frac{-1}{2} & 0
\end{array}\right)
$$

6. $B^{2}, C^{2}, C^{T} A B$ and $(A B)^{T} C$ are undefined. The others are

$$
A^{2}=\left(\begin{array}{ccc}
9 & 7 & 15 \\
1 & 10 & 5 \\
2 & 4 & 13
\end{array}\right), \quad A A^{T}=\left(\begin{array}{ccc}
30 & -1 & 13 \\
-1 & 6 & 4 \\
13 & 4 & 13
\end{array}\right), \quad B B^{T}=\left(\begin{array}{cc}
23 & 12 \\
12 & 21
\end{array}\right)
$$

and

$$
C C^{T}=\left(\begin{array}{ccc}
4 & 2 & 6 \\
2 & 1 & 3 \\
6 & 3 & 9
\end{array}\right)=C^{T} C
$$

7. $A B=B A=I$ by multiplying them out. $A^{T} B^{T}=(B A)^{T}=I^{T}=I$.

The first set of equations is

$$
B\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

so the solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=B^{-1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=A\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
7 \\
9 \\
30
\end{array}\right)
$$

since $B^{-1}=A$. The second set is

$$
B^{T}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

and since $B^{T^{-1}}=A^{T}$ the solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=B^{T^{-1}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=A^{T}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
17 \\
1 \\
32
\end{array}\right)
$$

GKS, 9/05/05

