MATHEMATICS 2 (MA10193) EXAMPLES SHEET 1: SOLUTIONS

1. We have

$$AA^{T} = \begin{pmatrix} \cos w & p \\ \sin w & q \end{pmatrix} \begin{pmatrix} \cos w & \sin w \\ p & q \end{pmatrix} = \begin{pmatrix} \cos^{2} w + p^{2} & \cos w \sin w + pq \\ \sin w \cos w + qp & \sin^{2} w + q^{2} \end{pmatrix}.$$

This is supposed to be equal to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, so $\cos^2 w + p^2 = 1 = \cos^2 w + \sin^2 w$, $\sin^2 w + q^2 = 1$, and $\cos w \sin w + pq = 0$. Therefore $p = \pm \sin w$, $q = \pm \cos w$ and the signs have to be opposite. So we get two possible solutions: $p = \sin w$, $q = -\cos w$ or $p = -\sin w$, $q = \cos w$.

2. We have

$$A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 3 & 2 & 1 & -2 \\ 0 & 2 & 1 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 3 \\ -1 & 2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix}.$$

 \mathbf{SO}

$$A^{T} = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 2 & 2 \\ 2 & 1 & 1 \\ -1 & -2 & 1 \end{pmatrix} \text{ and } B^{T} = \begin{pmatrix} 2 & -1 & 3 & 1 \\ 3 & 2 & 0 & 1 \end{pmatrix}.$$

This gives

$$AB = \begin{pmatrix} 6 & 4 \\ 5 & 11 \\ 2 & 5 \end{pmatrix} \text{ and } B^T A^T = \begin{pmatrix} 6 & 5 & 2 \\ 4 & 11 & 5 \end{pmatrix}.$$

3. $(A+B)^2 = A^2 + AB + BA + B^2 \pmod{A^2 + 2AB + B^2}$. If

$$A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix},$$

then

$$A + B = \begin{pmatrix} 4 & 2 \\ 4 & 3 \end{pmatrix}, \qquad (A + B)^2 = \begin{pmatrix} 4 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 24 & 14 \\ 28 & 17 \end{pmatrix},$$

and

$$A^{2} = \begin{pmatrix} 1 & -4 \\ 12 & 1 \end{pmatrix}, \quad AB = \begin{pmatrix} 3 & 5 \\ 8 & 11 \end{pmatrix}, \quad BA = \begin{pmatrix} 13 & 4 \\ 5 & 1 \end{pmatrix}, \quad B^{2} = \begin{pmatrix} 7 & 0 \\ 3 & 4 \end{pmatrix}$$

and adding up all of these gives $\begin{pmatrix} 24 & 14\\ 28 & 17 \end{pmatrix}$.

4. In this case, A and B are symmetric, so $A^T = A$ and $B^T = B$. If AB is symmetric as well, then we have $BA = B^T A^T = (AB)^T = AB$, so it is true that AB = BA if A, B and AB are all symmetric.

In this particular case we multiply the matrices and get

$$AB = \begin{pmatrix} 3 - 3x + z & -6 + 2x & z - 3x + 1 \\ 3x - 6 + yz & 4 - 3x - 3y & xz - 6 + y \\ 3 - 3y + 3z & -12 + 2y & z - 3y + 3 \end{pmatrix},$$

so if this is symmetric we have

$$3x - 6 + yz = -6 + 2x$$

$$z - 3x + 1 = 3 - 3y + 3z$$

$$xz - 6 + y = -12 + 2y.$$

So x = -yz from the first equation, and y - xz = 6 from the third equation so $y + yz^2 = 6$. Hence $y = \frac{6}{z^2+1}$ and $x = \frac{-6z}{z^2+1}$. The second equation says 3x - 3y + 2z = -2, so we substitute the expressions we have fouund for x and y and then multiply by $z^2 + 1$:

$$3\left(\frac{-6z}{z^2+1}\right) - 3\left(\frac{6}{z^2+1}\right) + 2z = -2$$

 \mathbf{SO}

$$-18z - 18 + 2z(z^{2} + 1) = -2(z^{2} + 1),$$

i.e. $2z^3+2z^2-16z-16=0$. One solution to this is z=-1: in fact it says $(2(z+1)(z^2-8)=0$ so the solutions are z=-1 or $z=\pm\sqrt{8}=\pm 2\sqrt{2}$. So there are three possible solutions: z=-1, x=3 and y=3; or $z=2\sqrt{2}, x=4\sqrt{2}/3$ and y=2/3; or $z=-2\sqrt{2}, x=-4\sqrt{2}/3$ and y=2/3.

5. We can write $B = (B + B^T)/2 + (B - B^T)/2$, i.e.

$$B = \begin{pmatrix} 4 & \frac{3}{2} & \frac{1}{2} \\ \frac{3}{2} & -1 & \frac{5}{2} \\ \frac{1}{2} & \frac{5}{2} & 1 \end{pmatrix} + \begin{pmatrix} 0 & \frac{-1}{2} & \frac{-5}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & \frac{-1}{2} & 0 \end{pmatrix}.$$

6. $B^2, C^2, C^T A B$ and $(AB)^T C$ are undefined. The others are

$$A^{2} = \begin{pmatrix} 9 & 7 & 15 \\ 1 & 10 & 5 \\ 2 & 4 & 13 \end{pmatrix}, \qquad AA^{T} = \begin{pmatrix} 30 & -1 & 13 \\ -1 & 6 & 4 \\ 13 & 4 & 13 \end{pmatrix}, \qquad BB^{T} = \begin{pmatrix} 23 & 12 \\ 12 & 21 \end{pmatrix},$$

and

$$CC^{T} = \begin{pmatrix} 4 & 2 & 6 \\ 2 & 1 & 3 \\ 6 & 3 & 9 \end{pmatrix} = C^{T}C.$$

7. AB = BA = I by multiplying them out. $A^T B^T = (BA)^T = I^T = I$. The first set of equations is

$$B\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1\\2\\3\end{pmatrix}$$

so the solution is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = B^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 9 \\ 30 \end{pmatrix}$$

since $B^{-1} = A$. The second set is

$$B^T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

and since $B^{T^{-1}} = A^T$ the solution is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = B^{T^{-1}} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = A^T \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 17 \\ 1 \\ 32 \end{pmatrix}$$

GKS, 9/05/05