MATHEMATICS 2 (MA10193)

EXAMPLES SHEET 3: SOLUTIONS

1. $(7-2 i)+(8+5 i)=15+3 i ;(3-i)(6+5 i)=23+9 i ;(3-i) /(6+5 i)=\frac{13-21 i}{65}$; $(2+i) / i=1-2 i ; \sqrt{-i}= \pm \frac{1+i}{\sqrt{2}}$.
2.

$$
A^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
1 & -1 & 1 \\
5- & -2 & -1 \\
-7 & 4 & 2
\end{array}\right)
$$

3. $z^{2}=8+6 i$. You should be able to draw the points $(3,1)$ and $(8,6)$ without help.
4. $z_{1} z_{2}=(1-2 i)(4+y i)=4+y i-8 i+2 y$, so the real part is $4+2 y$ which is zero if and only if $y=-2$.
$z_{1} / z_{2}=(1-2 i) /(4+y i)=(1-2 i)(4-y i) /\left(16+y^{2}\right)$. Since $16+y^{2}$ is real, this is real if and only if the numerator, $(1-2 i)(4-y i)$, is real; that is, if its imaginary part is zero. But the imaginary part of $(1-2 i)(4-y i)=4+2 y-y i-8 i$ is $-y-8$, so we need $y=8$.
5. $|z|=\sqrt{\sqrt{3}^{2}+1^{2}}=2$, and $\tan \arg z=1 / \sqrt{3}$ so $\arg z=\pi / 3$ (since z is in the first quadrant). Note: it is $\pi / 3$ exactly and a calculator approximation gives the wrong answer. The smallest positive integer n such that z^{n} is a real number is 3 , since $\arg z^{3}=3 \arg z=\pi$ (this is why an approximation is wrong: we need to get exactly π here, not something close to it).
6. If $x^{2}-5 x+32=0$ then $x=\frac{1}{2}(5 \pm i \sqrt{103})$. The eigenvalues of $\left(\begin{array}{cc}3 & 13 \\ -2 & 2\end{array}\right)$ are found by solving the equation $\left|\begin{array}{cc}3-x & 13 \\ -2 & 2-x\end{array}\right|=0$ and that is $x^{2}-5 x+32=0$ so those are the eigenvalues.

GKS, 9/05/05

