MATHEMATICS 2 (MA10193)

EXAMPLES SHEET 4: SOLUTIONS

1. The auxiliary equation is $\lambda^{2}-8 \lambda+41=0$, which has solutions $\lambda=4 \pm 5 i$. So the general solution is $y=A e^{4 x} \cos 5 x+B 4 x \sin 5 x$. (We could write this in terms of exponentials if we preferred.) The boundary condition at $x=0$ gives $A=1$ and the boundary condition at $x=5 \pi / 2$ gives (remember that $\cos 5 \pi / 2=0, \sin 5 \pi / 2=1$) gives $B=0$. So the solution is $y=e^{4 x} \cos 5 x$.
2. The auxiliary equation is $\lambda^{2}-3 \lambda+10=0$, which has solutions $\lambda=(3 \pm i \sqrt{31}) / 2$. A particular integral is of the form $y=\alpha \sin x+\beta \cos x$ for suitable α and β, and the condition is

$$
-\alpha \sin x-\beta \cos x-3 \alpha \cos x+3 \beta \sin x+10 \alpha \sin x+10 \beta \cos x=24 \sin x
$$

i.e. $(9 \alpha+3 \beta) \sin x+(-3 \alpha+9 \beta) \cos x=24 \sin x$. Therefore

$$
\begin{aligned}
9 \alpha+3 \beta & =24 \\
-3 \alpha+9 \beta & =0
\end{aligned}
$$

which gives $\alpha=12 / 5, \beta=4 / 5$.
So the general solution is

$$
y=A e^{3 x / 2} \cos \sqrt{31} x / 2+B e^{3 x / 2} \sin \sqrt{31} x / 2+\frac{12}{5} \sin x+\frac{4}{5} \cos x
$$

The boundary condition at $x=0$ gives

$$
0=A+\frac{4}{5}
$$

so $A=-4 / 5$, and the condition at $x=\pi / 4$ gives

$$
1=-\frac{4}{5} e^{3 \pi / 4} \cos \sqrt{31} \pi / 4+B e^{3 \pi / 4} \sin \sqrt{31} \pi / 4+\frac{8 \sqrt{2}}{5}
$$

since $\cos \pi / 2=\sin \pi / 2=\sqrt{2} / 2$. Therefore

$$
B=\left(1+\frac{4}{5} e^{3 \pi / 4} \cos \sqrt{31} \pi / 4-\frac{8 \sqrt{2}}{5}\right) /\left(e^{3 \pi / 4} \sin \sqrt{31} \pi / 4\right) \approx 0.409
$$

3. From the first equation, $3 y=-7 \frac{d x}{d t}+x$. Putting this into the second equation gives

$$
-7 \frac{d^{x}}{d t^{2}}+\frac{d x}{d t}-4 x=0
$$

The auxiliary equation for this is $-7 \lambda^{2}+\lambda-4=0$, so $\lambda=(1 \pm i \sqrt{111}) / 14$. Call these λ_{1} and λ_{2}. Then $x=A e^{\lambda_{1} t}+B e^{\lambda_{2} t}$ and therefore $y=\frac{-7 \lambda_{1}+1}{3} A e^{\lambda_{1} t}+\frac{-7 \lambda_{2}+1}{3} B e^{\lambda_{2} t}$.
4. The best way to do this is to eliminate $\frac{d x}{d t}$. If we multiply the first equation by 2 and subtract the first equation from it we get

$$
5 \frac{d y}{d t}+10 x-13 y=6 t^{2}+2 t-2
$$

so

$$
x=-\frac{1}{2} \frac{d y}{d t}+\frac{13}{10} y+\frac{3}{5} t^{2}+\frac{1}{5} t-\frac{1}{5} .
$$

Substituting this in the second equation we get

$$
-\frac{d^{y}}{d t^{2}}+\frac{13}{5} \frac{d y}{d t}-\frac{12}{5} t+\frac{2}{5}+\frac{d y}{d t}-2 \frac{d y}{d t}+\frac{26}{5} y+\frac{12}{5} t^{2}+\frac{4}{5} t-\frac{4}{5}+5 y=-2 t+2
$$

that is (collecting the terms and multiplying by 5)

$$
5 \frac{d^{y}}{d t^{2}}-8 \frac{d y}{d t}-51 y=60 t^{2}+130 t-60
$$

The CF for this is $A e^{\lambda_{1} t}+B e^{\lambda_{2} t}$ where $\lambda_{1}=(4+\sqrt{271}) / 5, \lambda_{2}=(4-\sqrt{271}) / 5 \mathrm{~A} \mathrm{PI}$ is of the form $a t^{2}+b t+c$ and we get

$$
60 t^{2}+130 t-60=10 a-16 a t-8 b-51 a t^{2}-51 b t-51 c
$$

so $a=-60 / 51, b=-630 / 289$ and $c=18980 / 14739$.
Hence $y=A e^{(4+\sqrt{271}) t / 5}+B e^{(4-\sqrt{271}) t / 5}-60 t^{2} / 51-630 t / 289+18980 / 14739$, and x can be calculated from the formula above: in floating point

$$
x=-2.79 A e^{4.09 t}+3.79 B e^{-2.49 t}-0.93 t^{2}-0.28 t+3.65 .
$$

GKS, 9/05/05

