MATHEMATICS 2 (MA10193)
 EXAMPLES SHEET 1

I, or somebody, will look at work given to me at the end of the examples class at 12:15 on Wednesday, 2nd March, or left before then in the folder on my office door (1W3.35). If you do not have a copy of this sheet, you can find one at
http://www.bath.ac.uk/~masgks/MA10193/sheet1.ps (or.dvi or .pdf).

1. Suppose that the matrix

$$
A=\left(\begin{array}{cc}
\cos w & p \\
\sin w & q
\end{array}\right)
$$

satisfies the equation $A A^{T}=I$. Find the values of p and q.
2. Check, by calculation, that $(A B)^{T}=B^{T} A^{T}$, where

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & -1 \\
3 & 2 & 1 & -2 \\
0 & 2 & 1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
2 & 3 \\
-1 & 2 \\
3 & 0 \\
1 & 1
\end{array}\right)
$$

3. Expand $(A+B)^{2}$. Check that your expansion is correct in the case where

$$
A=\left(\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
2 & 3 \\
1 & 1
\end{array}\right)
$$

4. Suppose that

$$
A=\left(\begin{array}{lll}
1 & x & 1 \\
x & 2 & y \\
1 & y & 3
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
3 & -3 & z \\
-3 & 2 & -3 \\
z & -3 & 1
\end{array}\right)
$$

and $A B$ is symmetric. Is it true that $A B=B A$ in this case? Find x, y and z (this is a bit harder).
5. Let

$$
B=\left(\begin{array}{ccc}
4 & 1 & -2 \\
2 & -1 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

Represent B as the sum of a symmetric matrix and a skew-symmetric matrix.
6. Let

$$
A=\left(\begin{array}{ccc}
2 & 5 & 1 \\
1 & -1 & 2 \\
0 & 2 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
2 & 1 \\
-3 & 0 \\
1 & 4 \\
3 & 2
\end{array}\right) \quad \text { and } C=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right) .
$$

Say which of the following expressions are defined, and calculate those that are:
a) A^{2}, B^{2}, C^{2}.
b) $A A^{T}, B^{T} B, C C^{T}, C^{T} C$.
c) $C^{T} A B,(A B)^{T} C$.
7. Suppose that

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{array}\right)
$$

a) Verify that $A B=B A=I$.
b) Use part (a) and the rules about multiplication and transposes of matrices to write down the value of $A^{T} B^{T}$.
c) Use (a) and (b) to write each of the following systems of equations in matrix form and thereby solve them:

$$
\begin{array}{r}
-11 x+2 y+2 z=1 \\
-4 x+z=2 \\
6 x-y-z=3
\end{array}
$$

and

$$
\begin{array}{r}
-11 x-4 y+6 z=1 \\
2 x-z=2 \\
2 x+y-z=3 .
\end{array}
$$

GKS, 22/02/05

