FURTHER MATHEMATICAL TECHNIQUES (MA10193)
 EXAMPLES SHEET 2

I, or somebody, will look at work given to me at the end of the examples class at 12:15 on Wednesday, 9th March, or left before then in the folder on my office door (1W3.35). If you do not have a copy of this sheet, you can find one at
http://www.bath.ac.uk/~masgks/MA10193/sheet1.ps (or .dvi or .pdf).

1. Solve the following set of simultaneous equations using elementary row operations:

$$
\begin{aligned}
x+2 y-8 z & =0 \\
2 x-3 y+5 z & =0 \\
3 x+2 y-12 z & =0
\end{aligned}
$$

2. Use the method of Gauss-Jordan elimination to solve the following set of simultaneous equations:

$$
\begin{aligned}
9 x+4 y+3 z & =-1 \\
5 x+y+2 z & =1 \\
7 x+3 y+4 z & =1
\end{aligned}
$$

3. Use elementary row transformations to find the solution to the following simultaneous equations in the case where $a_{11} a_{22}-a_{12} a_{21} \neq 0$

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

4. Find the rank of A where

$$
A=\left(\begin{array}{ccc}
0 & 2 & -1 \\
1 & 0 & 3 \\
2 & -4 & 2
\end{array}\right) .
$$

Hence (without solving the system) state how many solutions, if any, the following linear system has:

$$
\begin{aligned}
2 y-z & =1 \\
x+3 z & =3 \\
2 x-4 y+2 z & =-7
\end{aligned}
$$

5. Solve the equation (remember that $\operatorname{det} A$ or $|A|$ means the determinant of A)

$$
\left|\begin{array}{ccc}
x+1 & x & x-4 \\
2 & 1 & -4 \\
3 & 5 & 1
\end{array}\right|=0
$$

6. Consider the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 3 & x \\
-2 & 2 & 1 \\
x & 4 & 0
\end{array}\right)
$$

Calculate $\operatorname{det} A$ in terms of x and hence determine those values of x (to 2 d.p.) for which the matrix has rank less than 3 . If $x=2$ write down the rank of A.

GKS, 2/03/05

