Prime Numbers I for Helpers

A. 5 and 7 are prime; so are 11 and 13 , and 17 and 19. Find two prime numbers bigger than 100, one of which is 2 more than the other.
101 and 103 are the first such pair.
Is it possible to find two primes, bigger than 10, one of which is 3 more than the other?
No! One of them would be even.
4 more?
Yes - 13 and 17, for instance.
Is it possible to find three primes, bigger than 10, such that the second is 2 more than the first, and the third 2 more than the second?
No! one of them would be divisible by 3 .
B. How many prime numbers are there between 100 and 200? It will be easier if several of you work together on this one. Try to do it without a calculator.
They should break it up into sections: one group of them can look at 101-130, another at 131-160, a third at 161-190, and they can all have a go at the 190s. They only need to think about numbers ending in $1,3,7$ and 9 , and if you like you can tell them how to test quickly for divisibility by 3 . They know $11^{2}=121$ but they might not spot $7 \times 17=119,7 \times 19=133,11 \times 13=143,7 \times 23=161$, $13^{2}=169,11 \times 17=187$.
There are twenty-one, namely $101,103,107,109,113,127,131,137$, $139,149,151,157,163,167,173,179,181,191,193,197$ and 199.
Do you think there will be as many prime numbers between 1100 and 1200 as there are between 100 and 200?
No: primes thin out, because there are more and more smaller primes that could be factors of big numbers.
C. Try adding 1 to square numbers. Do you ever get a multiple of 3? Of 5 ? Of 7 ? Of 11 ? Of 13 ? Of 17 ? What if you subtract 1 instead? They should find that adding 1 to a square can give a multiple of 5 or 13 or 17 , but not of 3,7 or 11 , and that subtracting 1 it's the other way round.
This is an extra question for if they run out of things to do.

