What is a prime number?

What is a prime number?

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying p has no factors except itself and 1

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying p has no factors except itself and 1 and, oh yes, 1 isn't a prime...

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying p has no factors except itself and 1 and, oh yes, 1 isn't a prime. . . because we say it isn't.

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying p has no factors except itself and 1 and, oh yes, 1 isn't a prime. . . because we say it isn't. Why not?

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying p has no factors except itself and 1 and, oh yes, 1 isn't a prime. . . because we say it isn't. Why not? Well, wait and see.

What is a prime number?

What is a prime number?
It's a positive integer p with exactly two factors!
That's a quick way of saying p has no factors except itself and 1 and, oh yes, 1 isn't a prime. . . because we say it isn't. Why not? Well, wait and see.

Are you sure?

All right: here's the real mathematician's definition of a prime:

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 ,

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both).

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.
Hey, that's not what you said before!

Are you sure?

All right: here's the real mathematician's definition of a prime: We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number. Hey, that's not what you said before! It's not what my teacher said, either? What's going on?

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.
Hey, that's not what you said before! It's not what my teacher said, either? What's going on?
It's all right.

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.
Hey, that's not what you said before! It's not what my teacher said, either? What's going on?
It's all right. If $p=m n$ then p can't be prime,

Are you sure?

All right: here's the real mathematician's definition of a prime: We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number. Hey, that's not what you said before! It's not what my teacher said, either? What's going on?
It's all right. If $p=m n$ then p can't be prime, because p divides $m n$

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.
Hey, that's not what you said before! It's not what my teacher said, either? What's going on?
It's all right. If $p=m n$ then p can't be prime, because p divides $m n$ but $\frac{m}{p}$ and $\frac{n}{p}$ are less than 1 ,

Are you sure?

All right: here's the real mathematician's definition of a prime:
We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.
Hey, that's not what you said before! It's not what my teacher said, either? What's going on?
It's all right. If $p=m n$ then p can't be prime, because p divides $m n$ but $\frac{m}{p}$ and $\frac{n}{p}$ are less than 1 , so they can't be whole numbers.

Are you sure?

All right: here's the real mathematician's definition of a prime: We say that p is a prime number if it is bigger than 1 , and whenever p divides $m n$, automatically p divides m or n (or both). By " p divides n " I mean that $\frac{n}{p}$ is a whole number.
Hey, that's not what you said before! It's not what my teacher said, either? What's going on?
It's all right. If $p=m n$ then p can't be prime, because p divides $m n$ but $\frac{m}{p}$ and $\frac{n}{p}$ are less than 1 , so they can't be whole numbers. It's also true that if $p \neq m n$ then p is prime, but that's slightly harder: let's not bother about it.

Why isn't 1 a prime?

Well, because we say so. But why do we say so?

Why isn't 1 a prime?

Well, because we say so. But why do we say so? One answer is: in actual practice we find that we would keep having to say "suppose p is a prime different from 1 ", so we avoid that by saying it just once.

Why isn't 1 a prime?

Well, because we say so. But why do we say so? One answer is: in actual practice we find that we would keep having to say "suppose p is a prime different from 1 ", so we avoid that by saying it just once. But there is a better reason.

Unique factorisation

If I have a whole number n then I can find a lot of prime numbers and multiply them all together so as to get n.

Unique factorisation

If I have a whole number n then I can find a lot of prime numbers and multiply them all together so as to get n. I don't have any choice about which prime numbers I use (only what order I write them in).

Unique factorisation

If I have a whole number n then I can find a lot of prime numbers and multiply them all together so as to get n. I don't have any choice about which prime numbers I use (only what order I write them in). They are called the prime factors of n.

Unique factorisation

If I have a whole number n then I can find a lot of prime numbers and multiply them all together so as to get n.
I don't have any choice about which prime numbers I use (only what order I write them in). They are called the prime factors of n. If I allowed 1 as a prime, that wouldn't be true, because $6=2 \times 3=1 \times 2 \times 3$.

Unique factorisation

If I have a whole number n then I can find a lot of prime numbers and multiply them all together so as to get n.
I don't have any choice about which prime numbers I use (only what order I write them in). They are called the prime factors of n. If I allowed 1 as a prime, that wouldn't be true, because $6=2 \times 3=1 \times 2 \times 3$. So we'll agree that $6=2 \times 3$, and instead of arguing about how many 1 s to write, we'll decide not to write any.

The sieve of Eratosthenes

How do you find out which numbers are prime?

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ;

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3);

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3); then all the multiples of 5 (except 5);

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3); then all the multiples of 5 (except 5); and so on.

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3); then all the multiples of 5 (except 5); and so on.
The primes are what's left over.

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3); then all the multiples of 5 (except 5); and so on.
The primes are what's left over. I didn't need to bother about multiples of 4 :

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3); then all the multiples of 5 (except 5); and so on.
The primes are what's left over. I didn't need to bother about multiples of 4: they had already gone, because they are even.

The sieve of Eratosthenes

How do you find out which numbers are prime?
Let's make a list of all the numbers up to as far as we want to go, starting from 2.
Cross out all the even numbers except 2 ; then cross out all the multiples of 3 (except 3); then all the multiples of 5 (except 5); and so on.
The primes are what's left over. I didn't need to bother about multiples of 4: they had already gone, because they are even. You need chocolate...

How many primes are there?

The primes between 100 and 200 are

How many primes are there?

The primes between 100 and 200 are 101, 103, 107, 109, 113, 127, $131,137,139,149,151,157,163,167,173,179,181,191,193$, 197 and 199.

How many primes are there?

The primes between 100 and 200 are 101, 103, 107, 109, 113, 127, $131,137,139,149,151,157,163,167,173,179,181,191,193$, 197 and 199. That's twenty-one primes.
But with big numbers there aren't so many.

How many primes are there?

The primes between 100 and 200 are 101, 103, 107, 109, 113, 127, $131,137,139,149,151,157,163,167,173,179,181,191,193$, 197 and 199. That's twenty-one primes.
But with big numbers there aren't so many. Between $1,000,000$ and $1,000,100$ there are only seven primes:

How many primes are there?

The primes between 100 and 200 are 101, 103, 107, 109, 113, 127, $131,137,139,149,151,157,163,167,173,179,181,191,193$, 197 and 199. That's twenty-one primes.
But with big numbers there aren't so many. Between 1,000, 000 and $1,000,100$ there are only seven primes: $1,000,003$, $1,000,033,1,000,037,1,000,039,1,000,081$ and $1,000,099$.

How many primes are there?

The primes between 100 and 200 are 101, 103, 107, 109, 113, 127, $131,137,139,149,151,157,163,167,173,179,181,191,193$, 197 and 199. That's twenty-one primes.
But with big numbers there aren't so many. Between $1,000,000$ and $1,000,100$ there are only seven primes: $1,000,003$, $1,000,033,1,000,037,1,000,039,1,000,081$ and $1,000,099$.
Primes get rarer and rarer as the numbers get bigger.

How many primes are there?

But there are infinitely many primes!

How many primes are there?

But there are infinitely many primes! How do we know?

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that?

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?

How many primes are there?

But there are infinitely many primes! How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929 .}$

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together.

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which I'll call K.

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which I'll call K. Then I add 1 .

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which I'll call K. Then I add 1 . Is $K+1$ prime?

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which l'll call K. Then I add 1 . Is $K+1$ prime? It doesn't have to be,

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which l'll call K. Then I add 1 . Is $K+1$ prime? It doesn't have to be, but it does have prime factors.

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which l'll call K. Then I add 1 . Is $K+1$ prime? It doesn't have to be, but it does have prime factors. And those aren't on our list $p_{1}, p_{2}, \ldots, p_{7794929}$, because those all divide K, so they can't divide $K+1$ as well.

How many primes are there?

But there are infinitely many primes!
How do we know? How could you know a thing like that? You are only ever going to see a few primes: how do you know that there are more?
Suppose that the only primes are $p_{1}=2, p_{2}=3$ and so on up to $p_{7794929}$. Let's multiply all those numbers together. This gives a huge number which I'll call K. Then I add 1 . Is $K+1$ prime? It doesn't have to be, but it does have prime factors. And those aren't on our list $p_{1}, p_{2}, \ldots, p_{7794929}$, because those all divide K, so they can't divide $K+1$ as well. So there must after all be some more primes we didn't know about.

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

$$
\frac{N}{\text { number of digits of } N}
$$

primes less than N.

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

$$
\frac{N}{\text { number of digits of } N}
$$

primes less than N. There is a formula which tells you,

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

$$
\frac{N}{\text { number of digits of } N}
$$

primes less than N. There is a formula which tells you, more accurately than that but not perfectly,

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

$$
\frac{N}{\text { number of digits of } N}
$$

primes less than N. There is a formula which tells you, more accurately than that but not perfectly, how many there should be.

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

primes less than N. There is a formula which tells you, more accurately than that but not perfectly, how many there should be.
It predicts that the nth prime should be about $n(\log n+\log \log n-1)$.

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

primes less than N. There is a formula which tells you, more accurately than that but not perfectly, how many there should be.
It predicts that the nth prime should be about $n(\log n+\log \log n-1)$. That's pretty good.

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

$$
\frac{N}{\text { number of digits of } N}
$$

primes less than N. There is a formula which tells you, more accurately than that but not perfectly, how many there should be.
It predicts that the nth prime should be about
$n(\log n+\log \log n-1)$. That's pretty good. I chose a random number between a million and ten million, 7794929, and found that

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

primes less than N. There is a formula which tells you, more accurately than that but not perfectly, how many there should be.
It predicts that the nth prime should be about
$n(\log n+\log \log n-1)$. That's pretty good. I chose a random number between a million and ten million, 7794929, and found that the predicted value of the 7794929 th prime is about 137450715

How common are primes?

Think of a number, N : without working it out, roughly how many prime numbers less than N are there?
It turns out that there are about

primes less than N. There is a formula which tells you, more accurately than that but not perfectly, how many there should be.
It predicts that the nth prime should be about
$n(\log n+\log \log n-1)$. That's pretty good. I chose a random number between a million and ten million, 7794929, and found that the predicted value of the 7794929th prime is about 137450715 and the actual 7794929th prime is 137800093.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says. But Skewes' number is absolutely enormous.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says. But Skewes' number is absolutely enormous. (About 10^{316} nowadays.)

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says. But Skewes' number is absolutely enormous. (About 10^{316} nowadays.)
So you can't always tell what is happening by looking at a few cases, or even a few million cases.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says. But Skewes' number is absolutely enormous. (About 10^{316} nowadays.)
So you can't always tell what is happening by looking at a few cases, or even a few million cases.
There is a famous guess, called the Riemann hypothesis, which is too complicated to explain now but would mean that prime numbers occur fairly regularly.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says. But Skewes' number is absolutely enormous. (About 10^{316} nowadays.)
So you can't always tell what is happening by looking at a few cases, or even a few million cases.
There is a famous guess, called the Riemann hypothesis, which is too complicated to explain now but would mean that prime numbers occur fairly regularly. We know it is true for small numbers because we can ask a computer, but whether it is always true is one of the great unsolved problems of mathematics.

Is the formula right?

If you calculate it you always find that there are slightly fewer primes less than N than the formula says. But that is because N is less than Skewes' number. If N were bigger than Skewes' number there might be slightly more primes than the formula says. But Skewes' number is absolutely enormous. (About 10^{316} nowadays.)
So you can't always tell what is happening by looking at a few cases, or even a few million cases.
There is a famous guess, called the Riemann hypothesis, which is too complicated to explain now but would mean that prime numbers occur fairly regularly. We know it is true for small numbers because we can ask a computer, but whether it is always true is one of the great unsolved problems of mathematics. You need another break...

Patterns in the primes

Let's have a look at those problems.

Patterns in the primes

Let's have a look at those problems.
A.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39 , because that would mean two multiples of 13 in succession

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39, because that would mean two multiples of 13 in succession like having consecutive Mondays.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39 , because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39 , because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.
B. Yes, about half the primes are Left and half are Right.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39 , because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.
B. Yes, about half the primes are Left and half are Right. This (and more) was proved by Dirichlet in 1837.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39, because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.
B. Yes, about half the primes are Left and half are Right. This (and more) was proved by Dirichlet in 1837. Weirdly, slightly more are Left (Chebyshev bias, 1853) but there are plenty of both.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39, because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.
B. Yes, about half the primes are Left and half are Right. This (and more) was proved by Dirichlet in 1837. Weirdly, slightly more are Left (Chebyshev bias, 1853) but there are plenty of both.
C. Yes, you can always do this.

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39, because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.
B. Yes, about half the primes are Left and half are Right. This (and more) was proved by Dirichlet in 1837. Weirdly, slightly more are Left (Chebyshev bias, 1853) but there are plenty of both.
C. Yes, you can always do this. But although we've suspected that for centuries

Patterns in the primes

Let's have a look at those problems.
A. Yes, you can do that with 23 and 41 ; but not with $39=3 \times 13$.

13 times something can never be one more than a multiple of 39, because that would mean two multiples of 13 in succession like having consecutive Mondays. It's another thing that makes primes different from other numbers.
B. Yes, about half the primes are Left and half are Right. This (and more) was proved by Dirichlet in 1837. Weirdly, slightly more are Left (Chebyshev bias, 1853) but there are plenty of both.
C. Yes, you can always do this. But although we've suspected that for centuries it was only proved by Harald Helfgott in 2013.

What else?

5 is prime;

What else?

5 is prime; so is $5+6=11$

What else?

$$
5 \text { is prime; so is } 5+6=11 \text { and } 5+6+6=17
$$

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$,

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$.

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$. But maybe we could go on for longer if we started somewhere else instead of 5,

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$. But maybe we could go on for longer if we started somewhere else instead of 5, and went in bigger steps instead of sixes.

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$. But maybe we could go on for longer if we started somewhere else instead of 5, and went in bigger steps instead of sixes.
Actually you can:

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$. But maybe we could go on for longer if we started somewhere else instead of 5 , and went in bigger steps instead of sixes.
Actually you can: you can go on as long as you like if you make the right choices.

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$. But maybe we could go on for longer if we started somewhere else instead of 5 , and went in bigger steps instead of sixes.
Actually you can: you can go on as long as you like if you make the right choices. And we've known that since

What else?

5 is prime; so is $5+6=11$ and $5+6+6=17$ and $5+6+6+6=23$ and $5+6+6+6+6=29$, but then it stops because $5+6+6+6+6+6=35=5 \times 7$. But maybe we could go on for longer if we started somewhere else instead of 5 , and went in bigger steps instead of sixes.
Actually you can: you can go on as long as you like if you make the right choices. And we've known that since 2004, when it was proved by Ben Green and Terry Tao.

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013)

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013)

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013)

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now)

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon)

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon) or even 6

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon) or even 6 but not 2 yet.

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon) or even 6 but not 2 yet.
We don't know whether there are infinitely many pairs like 11 and 23 , where p is prime

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon) or even 6 but not 2 yet.
We don't know whether there are infinitely many pairs like 11 and 23 , where p is prime (it's called a Sophie Germain prime after the mathematician who thought of this one)

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon) or even 6 but not 2 yet.
We don't know whether there are infinitely many pairs like 11 and 23, where p is prime (it's called a Sophie Germain prime after the mathematician who thought of this one) and $2 p+1$ is also prime.

What we don't know

We don't know whether there are infinitely many pairs like 17 and 19 , where p and $p+2$ are both prime.
But we do know that we can get p and $p+k$ both prime infinitely often for some k no bigger than seventy million (April 2013) no, 4680 (May 2013) no, 600 (November 2013) no, 236 (now) or perhaps 12 (soon) or even 6 but not 2 yet.
We don't know whether there are infinitely many pairs like 11 and 23, where p is prime (it's called a Sophie Germain prime after the mathematician who thought of this one) and $2 p+1$ is also prime. And we don't know lots of other things...

