BIRATIONAL GEOMETRY EXAMPLES

Questions 1

1. Let $X_3 \subset \mathbb{P}^3$ be a nonsingular cubic, $L, M \subset X$ disjoint lines. Show that the map $\phi: X \longrightarrow L \times M = \mathbb{P}^1 \times \mathbb{P}^1$ is a morphism and it contracts 5 lines to points.

2. Suppose L = (x = y = 0), M = (z = t = 0) and $L_5 = (y = t = 0)$ lie on a nonsingular $X_3 \subset \mathbb{P}^3$. Prove that the map

$$\alpha: X \dashrightarrow \mathbb{P}^{\sharp}$$

defined by

$$(x, y, z, t) \mapsto (xt, yz, yt)$$

is a morphism and it contracts $L_1, \ldots, L_4, L'_5, L''_5$ (notation as in lectures).

3. Let $X_3 \subset \mathbb{P}^3_k$ be a nonsingular cubic over a perfect field k. Let $G = \operatorname{Gal}(\overline{k}/k)$, acting on the 27 lines of X. The following are equivalent:

- (a) $\rho = \operatorname{rk}(\operatorname{Pic} X) = 1$
- (b) The sum of the lines in each G-orbit is \sim a hyperplane section.
- (c). No Galois orbit consists of disjoint lines.

4. Find all the lines on a Fermat hypersurface $ax^3 + by^3 + cz^3 + dt^3 = 0$. If $a \in \mathbb{Q}$ is not a cube, then $X = (x^3 + y^3 + z^3 - at^3)$ has $\rho = 1$.

Questions 2

1. By explicit blow up, resolve the following (germs of) plane curve singularities at the origin of \mathbb{C}^2 :

$$x^{2} + y^{k} = 0$$
$$x^{3} + y^{5} = 0$$

2. The canonical class of X is the line bundle

$$K_X = \bigwedge^{\top} T_X = \Omega_X^n$$
 (Where $n = \dim X$).

Show that $K_{\mathbb{P}^n} = \mathcal{O}(-n-1)$.

3. ("Adjunction formula") If $Y \subset X$ is a nonsingular divisor (i.e. dim $Y = \dim X - 1$) then $K_Y = K_X + Y_{|Y|}$ [Look at the exact sequence $0 \to T_Y \to T_X|_Y \to NY \to 0$]

4. Let $P \in X = X_3 \subset \mathbb{P}^3$ be a point. Consider, as in the lectures, the projection from P, π_P :

$$bl_p = \epsilon \quad \swarrow \quad Y$$

$$K \quad \stackrel{\pi_P}{\longrightarrow} \quad \mathbb{P}^2$$

Show that, if $P \notin \text{line of } X$, then $\pi: Y \to \mathbb{P}^2$ is 2:1, branched along a quartic curve $B \subset \mathbb{P}^2$. Find the equation of B in terms of a suitable equation for X.

5. Consider a birational map $\phi \colon \mathbb{P}^2 \longrightarrow \mathbb{P}^2$, given by a linear system $\mathcal{M} \subset |\mathcal{O}(d)|$. Show that $\exists P \in \mathbb{P}^2$ with $\operatorname{mult}_P \mathcal{M} > d/3$. [Follow the proof of Segre's Theorem.]

Assume there are P_1 , P_2 , P_3 with $m_i = \text{mult}_{P_i} \mathcal{M} > d/3$. Choose coordinates such that $P_1 = (1, 0, 0)$, $P_2 = (0, 1, 0), P_3 = (0, 0, 1)$. Let $\alpha: \mathbb{P}^2 \to \mathbb{P}^2$ be the standard Cremona transformation

$$(x_0, x_1, x_2) \longrightarrow \left(\frac{1}{x_0}, \frac{1}{x_1}, \frac{1}{x_2}\right)$$

Show that $\phi \circ \alpha : \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ is given by a linear system $\mathcal{M}_1 \subset |\mathcal{O}(d_1)|$ with $d_1 < d$. 6. (*) Classify all $\phi : \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ birational, given by $\mathcal{M} \subset |\mathcal{O}_{\mathbb{P}^2}(2)|$. Show that ϕ is a composite of linear maps and standard Cremona Transformations.

Questions 3

1. Let X be a nonsingular surface, $C \subset S$ reduced and irreducible. Prove that, if $H^0(K_C) = (0)$, then $C \cong \mathbb{P}^1$. [Hint: consider the normalisation $\nu: \tilde{C} \to C$ and study the inclusion $\mathcal{O}_C \subset \nu_* \mathcal{O}_{\bar{C}}$.]

Let $D \subset X$ be a reduced connected curve with $H^0(K_D) = (0)$. Prove that D is a "tree of \mathbb{P}^1 s".

Let L be a line bundle on D, and assume $\deg(L_{|C}) \ge 0$ for every irreducible component C of D. Show that L is generated by global sections, $h^1(D, L) = 0$, and $h^0(D, L) = 1 + \deg D$.

2. Let $C \subset X$ be reduced, irreducible, $p_a(C) = 1$, and L a line bundle of degree d on C. Denote $R(C, L) = \bigoplus H^0(C, nL)$. Prove that

 $\widetilde{If}^{n \ge 0} d = 1,$

$$R = \frac{k[x, y, z]}{(z^2 + y^3 + a_4y + a_6)}$$

where $x \in R_1$, $y \in R_2$, $z \in R_3$ and $a_i \in k[x]$ has degree *i* If d = 2,

$$R = \frac{k[x_1, x_2, y]}{(y^2 + a_4(x_1, x_2))}$$

where $x_i \in R_1, y \in R_2$ If $d \ge 3 R$ is generated by R_1 , in particular If d = 3,

$$R = \frac{k[x_1, x_2, x_3]}{(a_3(x_1, x_2, x_3))} \qquad (\text{Where deg } a_3 = 3)$$

If d = 4,

$$R = \frac{k[x_1, x_2, x_3, x_4]}{\left(q(x_1, x_2, x_3, x_4), q'(x_1, x_2, x_3, x_4)\right)} \qquad \text{(Where } \deg q = \deg q' = 2\text{)}.$$

3. Let D be a divisor on a variety X. Assume:

(i) $R(D, \mathcal{O}_D(D))$ is generated by elements of degree $\leq r$

(ii) $H^1(X, \mathcal{O}(jD)) = (0)$ for all j > 0.

Prove that R(X, D) is generated by elements of degree $\leq r$.

4, (*) Prove that a del Pezzo surface of degree $d \ge 3$ is a surface $X_d \subset \mathbb{P}^d$ of degree d. [You must show that a general member $D \in |-K|$ is reduced, then use Q2.3.]

Questions 4

1. Let $\phi: \mathbb{P}^2 \longrightarrow \mathbb{P}^2$ be a birational map, given by a linear system $\mathcal{M} \subset |\mathcal{O}(d)|$. In the notation of the lectures, show that $m_1 + m_2 + m_3 > d$. [Hint: we know that $m_1 > d/3$. Show that $m_2, m_3 > \frac{d-m_1}{2}$.]

2. Show that the nonstandard quadratic maps

$$(x_0, x_1, x_2) \dashrightarrow (x_0 x_2, x_1 x_2, x_0^2) (x_0, x_1, x_2) \dashrightarrow (x_0^2, x_0 x_1, x_1^2 + x_0 x_2)$$

are composites of linear and standard quadratic maps.

3. Show that a de Jonquières map:

$$y \longrightarrow \frac{ay+b}{cy+d}$$

 $(a, b, c, d \in k[x])$ can be written as a composite of linear and quadratic maps. 4. Show that $\operatorname{Pic} \mathbb{F}_a = \mathbb{Z}[A] \oplus \mathbb{Z}[B]$ and

$$\begin{cases} A^2 = 0, \ AB = 1\\ B^2 = -a. \end{cases}$$

Show $K_{\mathbb{F}_a} = -(2+a)A - 2B$.

If $\mathcal{M} \subset |\mathcal{O}(qA + bB)|$ is a mobile linear system, then $q \geq ba$. [You may want to establish, and use, the following description of \mathbb{F}_a :

$$\mathbb{F}_a = (\mathbb{C}^2_{t_1, t_2} \setminus 0) \times (\mathbb{C}^2_{x_1, x_2} \setminus 0) / \mathbb{C}^{\times} \times \mathbb{C}^{\times}$$

where $\mathbb{C}^{\times}\,\times\,\mathbb{C}^{\times}\,$ acts as

$$\begin{aligned} (t_1, t_2; x_1, x_2) &\longrightarrow (\lambda t_1, \lambda t_2, x_1, -ax_2) \\ &\longrightarrow (t_1, t_2, \mu x_1, \mu x_2) \end{aligned} \Big] \end{aligned}$$