BIRATIONAL GEOMETRY EXAMPLES

Questions 1

1. Let $X_{3} \subset \mathbb{P}^{3}$ be a nonsingular cubic, $L, M \subset X$ disjoint lines. Show that the map $\phi: X \rightarrow L \times M=\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a morphism and it contracts 5 lines to points.
2. Suppose $L=(x=y=0), M=(z=t=0)$ and $L_{5}=(y=t=0)$ lie on a nonsingular $X_{3} \subset \mathbb{P}^{3}$. Prove that the map

$$
\alpha: X \rightarrow \mathbb{P}^{2}
$$

defined by

$$
(x, y, z, t) \mapsto(x t, y z, y t)
$$

is a morphism and it contracts $L_{1}, \ldots, L_{4}, L_{5}^{\prime}, L_{5}^{\prime \prime}$ (notation as in lectures).
3. Let $X_{3} \subset \mathbb{P}_{k}^{3}$ be a nonsingular cubic over a perfect field k. Let $G=\operatorname{Gal}(\bar{k} / k)$, acting on the 27 lines of X. The following are equivalent:
(a) $\rho=\operatorname{rk}(\operatorname{Pic} X)=1$
(b) The sum of the lines in each G-orbit is \sim a hyperplane section.
(c). No Galois orbit consists of disjoint lines.
4. Find all the lines on a Fermat hypersurface $a x^{3}+b y^{3}+c z^{3}+d t^{3}=0$. If $a \in \mathbb{Q}$ is not a cube, then $X=\left(x^{3}+y^{3}+z^{3}-a t^{3}\right.$ has $\rho=1$.

Questions 2

1. By explicit blow up, resolve the following (germs of) plane curve singularities at the origin of \mathbb{C}^{2} :

$$
\begin{aligned}
& x^{2}+y^{k}=0 \\
& x^{3}+y^{5}=0
\end{aligned}
$$

2. The canonical class of X is the line bundle

$$
K_{X}=\bigwedge^{\top} T_{X}=\Omega_{X}^{n} \quad(\text { Where } n=\operatorname{dim} X)
$$

Show that $K_{\mathbb{P}^{n}}=\mathcal{O}(-n-1)$.
3. ("Adjunction formula") If $Y \subset X$ is a nonsingular divisor (i.e. $\operatorname{dim} Y=\operatorname{dim} X-1$) then $K_{Y}=K_{X}+Y_{\mid Y}$ [Look at the exact sequence $0 \rightarrow T_{Y} \rightarrow T_{X \mid Y} \rightarrow N Y \rightarrow 0$]
4. Let $P \in X=X_{3} \subset \mathbb{P}^{3}$ be a point. Consider, as in the lectures, the projection from P, π_{P} :

Show that, if $P \notin$ line of X, then $\pi: Y \rightarrow \mathbb{P}^{2}$ is $2: 1$, branched along a quartic curve $B \subset \mathbb{P}^{2}$. Find the equation of B in terms of a suitable equation for X.
5. Consider a birational map $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, given by a linear system $\mathcal{M} \subset|\mathcal{O}(d)|$. Show that $\exists P \in \mathbb{P}^{2}$ with mult $_{P} \mathcal{M}>d / 3$. [Follow the proof of Segre's Theorem.]

Assume there are P_{1}, P_{2}, P_{3} with $m_{i}=\operatorname{mult}_{P_{i}} \mathcal{M}>d / 3$. Choose coordinates such that $P_{1}=(1,0,0)$, $P_{2}=(0,1,0), P_{3}=(0,0,1)$. Let $\alpha: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be the standard Cremona transformation

$$
\left(x_{0}, x_{1}, x_{2}\right) \rightarrow\left(\frac{1}{x_{0}}, \frac{1}{x_{1}}, \frac{1}{x_{2}}\right)
$$

Show that $\phi \circ \alpha: \mathbb{P}^{2} \ldots \mathbb{P}^{2}$ is given by a linear system $\mathcal{M}_{1} \subset\left|\mathcal{O}\left(d_{1}\right)\right|$ with $d_{1}<d$.
6. (*) Classify all $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ birational, given by $\mathcal{M} \subset\left|\mathcal{O}_{\mathbb{P}^{2}}(2)\right|$. Show that ϕ is a composite of linear maps and standard Cremona Transformations.

Questions 3

1. Let X be a nonsingular surface, $C \subset S$ reduced and irreducible. Prove that, if $H^{0}\left(K_{C}\right)=(0)$, then $C \cong \mathbb{P}^{1}$. [Hint: consider the normalisation $\nu: \tilde{C} \rightarrow C$ and study the inclusion $\mathcal{O}_{C} \subset \nu_{*} \mathcal{O}_{\tilde{C}}$]
Let $D \subset X$ be a reduced connected curve with $H^{0}\left(K_{D}\right)=(0)$. Prove that D is a "tree of $\mathbb{P}^{1} \mathrm{~s}^{\prime}$.
Let L be a line bundle on D, and assume $\operatorname{deg}\left(L_{\mid C}\right) \geq 0$ for every irreducible component C of D. Show that L is generated by global sections, $h^{1}(D, L)=0$, and $h^{0}(D, L)=1+\operatorname{deg} D$.
2. Let $C \subset X$ be reduced, irreducible, $p_{a}(C)=1$, and L a line bundle of degree d on C. Denote $R(C, L)=$ $\bigoplus H^{0}(C, n L)$. Prove that
$\stackrel{n \geq 0}{\text { If }} d$
If $d=1$,

$$
R=\frac{k[x, y, z}{\left(z^{2}+y^{3}+a_{4} y+a_{6}\right)}
$$

where $x \in R_{1}, y \in R_{2}, z \in R_{3}$ and $a_{i} \in k[x]$ has degree i
If $d=2$,

$$
R=\frac{k\left[x_{1}, x_{2}, y\right.}{\left(y^{2}+a_{4}\left(x_{1}, x_{2}\right)\right)}
$$

where $x_{i} \in R_{1}, y \in R_{2}$
If $d \geq 3 R$ is generated by R_{1}, in particular
If $d=3$,

$$
R=\frac{k\left[x_{1}, x_{2}, x_{3}\right]}{\left(a_{3}\left(x_{1}, x_{2}, x_{3}\right)\right)} \quad\left(\text { Where } \operatorname{deg} a_{3}=3\right)
$$

If $d=4$,

$$
R=\frac{k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]}{\left(q\left(x_{1}, x_{2}, x_{3}, x_{4}\right), q^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)} \quad\left(\text { Where } \operatorname{deg} q=\operatorname{deg} q^{\prime}=2\right)
$$

3. Let D be a divisor on a variety X. Assume:
(i) $R\left(D, \mathcal{O}_{D}(D)\right)$ is generated by elements of degree $\leq r$
(ii) $H^{1}(X, \mathcal{O}(j D))=(0)$ for all $j>0$.

Prove that $R(X, D)$ is generated by elements of degree $\leq r$.
$4,\left(^{*}\right)$ Prove that a del Pezzo surface of degree $d \geq 3$ is a surface $X_{d} \subset \mathbb{P}^{d}$ of degree d. [You must show that a general member $D \in|-K|$ is reduced, then use Q 2.3 .]

Questions 4

1. Let $\phi: \mathbb{P}^{2}$--> \mathbb{P}^{2} be a birational map, given by a linear system $\mathcal{M} \subset|\mathcal{O}(d)|$. In the notation of the lectures, show that $m_{1}+m_{2}+m_{3}>d$. [Hint: we know that $m_{1}>d / 3$. Show that $m_{2}, m_{3}>\frac{d-m_{1}}{2}$.]
2. Show that the nonstandard quadratic maps

$$
\begin{aligned}
& \left(x_{0}, x_{1}, x_{2}\right) \rightarrow\left(x_{0} x_{2}, x_{1} x_{2}, x_{0}^{2}\right) \\
& \left(x_{0}, x_{1}, x_{2}\right) \rightarrow\left(x_{0}^{2}, x_{0} x_{1}, x_{1}^{2}+x_{0} x_{2}\right)
\end{aligned}
$$

are composites of linear and standard quadratic maps.
3. Show that a de Jonquières map:

$$
y--\frac{a y+b}{c y+d}
$$

($a, b, c, d \in k[x]$) can be written as a composite of linear and quadratic maps.
4. Show that $\operatorname{Pic} \mathbb{F}_{a}=\mathbb{Z}[A] \oplus \mathbb{Z}[B]$ and

$$
\left\{\begin{array}{l}
A^{2}=0, A B=1 \\
B^{2}=-a
\end{array}\right.
$$

Show $K_{\mathbb{F}_{a}}=-(2+a) A-2 B$.
If $\mathcal{M} \subset|\mathcal{O}(q A+b B)|$ is a mobile linear system, then $q \geq b a$.
[You may want to establish, and use, the following description of \mathbb{F}_{a} :

$$
\mathbb{F}_{a}=\left(\mathbb{C}_{t_{1}, t_{2}}^{2} \backslash 0\right) \times\left(\mathbb{C}_{x_{1}, x_{2}}^{2} \backslash 0\right) / \mathbb{C}^{\times} \times \mathbb{C}^{\times}
$$

where $\mathbb{C}^{\times} \times \mathbb{C}^{\times}$acts as

$$
\begin{aligned}
\left(t_{1}, t_{2} ; x_{1}, x_{2}\right) & \longrightarrow\left(\lambda t_{1}, \lambda t_{2}, x_{1},-a x_{2}\right) \\
& \longrightarrow\left(t_{1}, t_{2}, \mu x_{1}, \mu x_{2}\right)
\end{aligned}
$$

