VECTOR BUNDLES EXAMPLES

Exercises 1

1.1.1 Show that the Zariski topology on a quasi-projective variety X is a topology, but is non-Hausdorff unless X is finite.
1.1.2 Let X be an irrducible variety and $f: X \rightarrow Y$ a morphism. Show that $\overline{f(X)}$ (the closure of $f(X)$ in the Zariski topology) is irreducible.
1.1.3 Show that \mathbb{P}^{1} is irreducible. (Try \mathbb{P}^{n} if you like.)
1.1.4 Let X be a quasi-projective variety. Show that the diagonal $\Delta \subset X \times X, \Delta=\{(x, x) \mid x \in X\}$, is Zariski-closed in $X \times X$, but that Δ is not closed in the product of the Zariski topologies on the two copies of X unless X is finite.
1.2.1 Let X be an irreducible variety. Show that $\mathbb{C}(X)$ is a field.
1.3.1 Consider the following curves in \mathbb{P}^{2}

$$
\text { a. } \quad y^{2} z-x^{3}=0
$$

b. $y^{2} z-x^{3}-x^{2} z=0$
c. $y^{2} z-x^{3}+x z^{2}=0$

Show that (a) and (b) each has one singular point, while (c) is non-singular. Sketch the real affine part of each curve.
[Here by the real affine part we mean

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y, 1)=0\right\}
$$

Exercises 2

2.1.1 Let

$$
\begin{aligned}
L & =\left\{(x, v) \in \mathbb{P}^{n} \times \mathbb{C}^{n+1} \mid v \text { lies on the line in } \mathbb{C}^{n+1} \text { corresponding to } x\right\} \\
& =\left\{\left(\left(x_{0}: \ldots: x_{n}\right),\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)\right) \mid x_{i} \in \mathbb{C} \text { not all zero, } \lambda \in \mathbb{C}\right\} .
\end{aligned}
$$

Show that the projection $p: L \rightarrow \mathbb{P}^{n}$

$$
p(x, v)=x
$$

makes L into a line bundle over \mathbb{P}^{n} (usually denoted by $\mathcal{O}(-1)$).
[Hint. For $0 \leq i \leq n$, let U_{i} denote the Zariski open set in \mathbb{P}^{n} defined by $x_{i} \neq 0$. Consider the restriction of L to U_{i}.]
2.1.2 Show that $\mathcal{O}(-1)$ is defined with respect to the covering $\left\{U_{i}\right\}$ of \mathbb{P}^{n} by the transition functions $g_{i j}=\frac{x_{i}}{x_{j}}$.
2.1.3 Define the line bundle $\mathcal{O}(1)$ over \mathbb{P}^{n} by $\mathcal{O}(1)=\mathcal{O}(-1)^{*}$. Then define $\mathcal{O}(a)$ for $a \in \mathbb{Z}$ as follows:

$$
\mathcal{O}(a)= \begin{cases}\overbrace{\mathcal{O}(1) \otimes \cdots \otimes \mathcal{O}(1)}^{a} & \text { for } a>0 \\ \mathcal{O} & \text { for } a=0 \\ \underbrace{\mathcal{O}(-1) \otimes \cdots \otimes \mathcal{O}(-1)}_{a} & \text { for } a<0\end{cases}
$$

Show that, for any $a, b \in \mathbb{Z}, \mathcal{O}(a+b)=\mathcal{O}(a) \otimes \mathcal{O}(b)$. Show also that, with respect to the open covering $\left\{U_{i}\right\}, \mathcal{O}(a)$ is defined by the transition functions $g_{i j}=\left(\frac{x_{i}}{x_{j}}\right)^{a}$.
2.2.1 Show that, for $a \geq 0, \Gamma(\mathcal{O}(a))$ can be identified with the space of homogeneous polynomials of degree a in x_{0}, \ldots, x_{n}. Show also that, for $a<0, \Gamma(\mathcal{O}(a))=0$.

Exercises 3

3.1.3 Show that $K_{\mathbb{P}^{n}} \cong \mathcal{O}(-n-1)$.

In problems 3.2.1-3.2.4, C is a non-singular curve and K is its canonical bundle. The genus of C is g and is defined by $g=h^{1}(\mathcal{O})$.
3.2.1 Prove the Riemann-Roch theorem for line bundles over C.
3.2.2 Using Riemann-Roch and Serre duality, show that $\operatorname{deg} K=2 g-2$ and $h^{0}(K)=g$.
3.2.3 Show that every line bundle L of degree $>2 g-2$ over C has $h^{0}=d+1-g$. Show further that L is very ample whenever $\operatorname{deg} L>2 g$.
3.2.4 Show that, on \mathbb{P}^{1}, at least one of $h^{0}(\mathcal{O}(a))$ and $h^{1}(\mathcal{O}(a))$ is 0 . For what values of a is it true that $h^{0}(\mathcal{O}(a))=h^{1}(\mathcal{O}(a))=0$?
3.3.1 For given a, b, find all vector bundles E on \mathbb{P}^{1} for which there exists an exact sequence

$$
0 \longrightarrow \mathcal{O}(a) \longrightarrow E \longrightarrow \mathcal{O}(b) \longrightarrow 0
$$

3.4.1 Let E be an indecomposable vector bundle on an elliptic curve C. Show that there exists a unique line bundle L of degree 0 and an exact sequence

$$
0 \longrightarrow L \longrightarrow E \longrightarrow L \longrightarrow 0
$$

(This completes the classification of rank-2 bundles given in the lectures.)
[Hint. Any vector bundle F of degree 2 has $h^{0}(F) \geq 2$. Deduce that, if F is decomposable, then F possesses a subbundle isomorphic to $\mathcal{O}(x)$ for some $x \in C$.]

Exercises 4

4.1.1 Show that every line bundle over a non-singular curve C is stable.
4.1.2 Show that, if E is stable (semistable) and L is a line bundle, then $E \otimes L$ is stable (semistable).
4.1.3 Show that, if E is stable, then E is simple (i.e. $h^{0}(E n d E)=1$ or equivalently the only endomorphisms of E are the scalar multiples of the identity.)
4.1.4 Let E be a semistable bundle of rank n and degree d over C with $d>n(2 g-1)$. Prove
a. E is generated by its sections (i.e., given and point v in the fibre E_{x} of E over the point $x \in C, \exists$ section s of E such that $s(x)=v$)
b. $h^{1}(E)=0$.
4.1.5 Show that the only stable bunles on \mathbb{P}^{1} are the line bundles.
4.1.6 Show that \exists stable bundles of rank n and degree d over an elliptic curve C if and only if $(n, d)=1$. Describe $M(n, d)$ in this case.
4.1.7 Suppose $g \geq 2$ and $d \in \mathbb{Z}$. Show that \exists stable bundles of rank 2 and degree d over C.
[Hint. Consider extensions of the form

$$
0 \longrightarrow L_{1} \longrightarrow E \longrightarrow L_{2} \longrightarrow 0
$$

where $\operatorname{deg} L_{2}-\operatorname{deg} L_{1}=1$ or 2 . In the first case, it is easy to show that any non-trivial extension is stable; in the second, one can show that \exists extensions which are stable.]
4.1.8 Try generalising 4.1.7 to arbitrary n.
4.2.1 For an alternative proof of 4.1.8, try to prove that R_{d} is always non-empty if $g \geq 2$

Exercises 5

5.1.1 Let U be a non-empty Zariski-open subset of an irreducible variety X. Show that U is irreducible. 5.1.2 Let E be a vector bundle over a curve C (it is not necessary to assume C non-singular), and suppose that E is generated by its sections. Show that there exists an exact sequence

$$
0 \longrightarrow \mathcal{O}^{n-1} \longrightarrow E \longrightarrow L \longrightarrow 0
$$

where $L=\operatorname{det} E$.

RESEARCH PROBLEM

For what values of d is $B(2, d, 4) \neq \emptyset$?

