VECTOR BUNDLES EXAMPLES

Exercises 1

1.1.1 Show that the Zariski topology on a quasi-projective variety X is a topology, but is non-Hausdorff unless X is finite.

1.1.2 Let X be an irrducible variety and $f: X \to Y$ a morphism. Show that $\overline{f(X)}$ (the closure of f(X) in the Zariski topology) is irreducible.

1.1.3 Show that \mathbb{P}^1 is irreducible. (Try \mathbb{P}^n if you like.)

1.1.4 Let X be a quasi-projective variety. Show that the diagonal $\Delta \subset X \times X$, $\Delta = \{(x, x) \mid x \in X\}$, is Zariski-closed in $X \times X$, but that Δ is *not* closed in the product of the Zariski topologies on the two copies of X unless X is finite.

1.2.1 Let X be an irreducible variety. Show that $\mathbb{C}(X)$ is a field.

1.3.1 Consider the following curves in \mathbb{P}^2

a.
$$y^2 z - x^3 = 0$$

b. $y^2 z - x^3 - x^2 z = 0$
c. $y^2 z - x^3 + xz^2 = 0$

Show that (a) and (b) each has one singular point, while (c) is non-singular. Sketch the real affine part of each curve.

[Here by the *real affine* part we mean

$$\{(x, y) \in \mathbb{R}^2 \mid f(x, y, 1) = 0\}.$$

Exercises 2

2.1.1 Let

 $L = \{ (x, v) \in \mathbb{P}^n \times \mathbb{C}^{n+1} \mid v \text{ lies on the line in } \mathbb{C}^{n+1} \text{ corresponding to } x \}$ $= \{ ((x_0 : \ldots : x_n), (\lambda x_0, \ldots, \lambda x_n)) \mid x_i \in \mathbb{C} \text{ not all zero}, \lambda \in \mathbb{C} \}.$

Show that the projection $p: L \to \mathbb{P}^n$

p(x,v)=x

makes L into a line bundle over \mathbb{P}^n (usually denoted by $\mathcal{O}(-1)$).

[Hint. For $0 \le i \le n$, let U_i denote the Zariski open set in \mathbb{P}^n defined by $x_i \ne 0$. Consider the restriction of L to U_i .]

2.1.2 Show that $\mathcal{O}(-1)$ is defined with respect to the covering $\{U_i\}$ of \mathbb{P}^n by the transition functions $g_{ij} = \frac{x_i}{x_j}$. 2.1.3 Define the line bundle $\mathcal{O}(1)$ over \mathbb{P}^n by $\mathcal{O}(1) = \mathcal{O}(-1)^*$. Then define $\mathcal{O}(a)$ for $a \in \mathbb{Z}$ as follows:

$$\mathcal{O}(a) = \begin{cases} \overbrace{\mathcal{O}(1) \otimes \cdots \otimes \mathcal{O}(1)}^{a} & \text{for } a > 0\\ \mathcal{O} & \text{for } a = 0\\ \underbrace{\mathcal{O}(-1) \otimes \cdots \otimes \mathcal{O}(-1)}_{a} & \text{for } a < 0. \end{cases}$$

Show that, for any $a, b \in \mathbb{Z}$, $\mathcal{O}(a+b) = \mathcal{O}(a) \otimes \mathcal{O}(b)$. Show also that, with respect to the open covering $\{U_i\}, \mathcal{O}(a)$ is defined by the transition functions $g_{ij} = \left(\frac{x_i}{x_j}\right)^a$.

2.2.1 Show that, for $a \ge 0$, $\Gamma(\mathcal{O}(a))$ can be identified with the space of homogeneous polynomials of degree a in x_0, \ldots, x_n . Show also that, for a < 0, $\Gamma(\mathcal{O}(a)) = 0$.

Exercises 3

3.1.3 Show that $K_{\mathbb{P}^n} \cong \mathcal{O}(-n-1)$.

In problems 3.2.1–3.2.4, C is a non-singular curve and K is its canonical bundle. The genus of C is g and is defined by $g = h^1(\mathcal{O})$.

3.2.1 Prove the Riemann-Roch theorem for line bundles over C.

3.2.2 Using Riemann-Roch and Serre duality, show that deg K = 2g - 2 and $h^0(K) = g$.

3.2.3 Show that every line bundle L of degree > 2g - 2 over C has $h^0 = d + 1 - g$. Show further that L is very ample whenever deg L > 2g.

3.2.4 Show that, on \mathbb{P}^1 , at least one of $h^0(\mathcal{O}(a))$ and $h^1(\mathcal{O}(a))$ is 0. For what values of a is it true that $h^0(\mathcal{O}(a)) = h^1(\mathcal{O}(a)) = 0$?

3.3.1 For given a, b, find all vector bundles E on \mathbb{P}^1 for which there exists an exact sequence

$$0 \longrightarrow \mathcal{O}(a) \longrightarrow E \longrightarrow \mathcal{O}(b) \longrightarrow 0.$$

3.4.1 Let E be an indecomposable vector bundle on an elliptic curve C. Show that there exists a unique line bundle L of degree 0 and an exact sequence

$$0 \longrightarrow L \longrightarrow E \longrightarrow L \longrightarrow 0.$$

(This completes the classification of rank-2 bundles given in the lectures.)

[Hint. Any vector bundle F of degree 2 has $h^0(F) \ge 2$. Deduce that, if F is decomposable, then F possesses a subbundle isomorphic to $\mathcal{O}(x)$ for some $x \in C$.]

Exercises 4

4.1.1 Show that every line bundle over a non-singular curve C is stable.

4.1.2 Show that, if E is stable (semistable) and L is a line bundle, then $E \otimes L$ is stable (semistable).

4.1.3 Show that, if E is stable, then E is simple (i.e. $h^0(\text{End } E) = 1$ or equivalently the only endomorphisms of E are the scalar multiples of the identity.)

4.1.4 Let E be a semistable bundle of rank n and degree d over C with d > n(2g-1). Prove

a. E is generated by its sections (i.e., given and point v in the fibre E_x of E over the point $x \in C$, \exists section s of E such that s(x) = v)

b.
$$h^1(E) = 0$$
.

4.1.5 Show that the only stable bunles on \mathbb{P}^1 are the line bundles.

4.1.6 Show that \exists stable bundles of rank n and degree d over an elliptic curve C if and only if (n, d) = 1. Describe M(n, d) in this case.

4.1.7 Suppose $g \ge 2$ and $d \in \mathbb{Z}$. Show that \exists stable bundles of rank 2 and degree d over C.

[Hint. Consider extensions of the form

$$0 \longrightarrow L_1 \longrightarrow E \longrightarrow L_2 \longrightarrow 0$$

where deg L_2 - deg $L_1 = 1$ or 2. In the first case, it is easy to show that any non-trivial extension is stable; in the second, one can show that \exists extensions which are stable.]

4.1.8 Try generalising 4.1.7 to arbitrary n.

4.2.1 For an alternative proof of 4.1.8, try to prove that R_d is always non-empty if $g \ge 2$

Exercises 5

5.1.1 Let U be a non-empty Zariski-open subset of an irreducible variety X. Show that U is irreducible. 5.1.2 Let E be a vector bundle over a curve C (it is not necessary to assume C non-singular), and suppose that E is generated by its sections. Show that there exists an exact sequence

$$0 \longrightarrow \mathcal{O}^{n-1} \longrightarrow E \longrightarrow L \longrightarrow 0,$$

where $L = \det E$. RESEARCH PROBLEM For what values of d is $B(2, d, 4) \neq \emptyset$?