
Part A

1. Consider the following four pieces of code. Do they all have the same effect, and if
not, why not? [6]

Code Fragment 1

for i=1:1000
a(i)=i^2;

end

Code Fragment 2

for i=1000:-1:1
a(i)=i^2;

end

Code Fragment 3

a=[1:1000];
a=a*a;

Code Fragment 4

a=[1:1000];
a=a.*a;

A. 1 and 2 have almost the same effects, a is an array of squares of integers. In 1 i
ends up as 1000, while in 2 it end up as 1. 4 is very much the same, but doesn’t
change i at all. 3 is an error, as one can’t multiply a 1× 1000 vector by itself.

From the point of view of efficiency, which code fragments are bad, and why? [4]

A. 1 has the growing array problem, so is quadratic in the length of the array, while 2
and 4 are linear. Hence 1 is definitely the worst (of those that work). I would need
to experiment betwen 2 and 4: 4 uses MatLab builtins, but would seem to make two
arrays, each of length 1000.

What other piece of code might you suggest to get the same effect? [2]

A. a=[1:1000].*[1:1000];. As in 4, but MatLab will probably not bother creating the
intermediate arrays as not named.

Consider Code Fragment 5 from List.m — what is its O complexity, in both time
and space, for deleting k objects from a list of length n? How does this compare
with the array-based equivalent? [4]

Code Fragment 5

function l2=delk(l,k) % deletes the first k elements
if (k==0)

l2=l;
else

l2=l.tail.delk(k-1);
end

end

A. time: O(k) and space O(1) as nothing is created. The array based equivalents are
O(n− k) for both time and space (buidling the new structure).

Page 2 of 8 XX10190

2. Define the terms ordered (binary) tree, AVL tree and (ordered binary) heap. Your
answers should define the AVL condition and the heap condition. [8]

A. • An ordered binary tree is one where every node in the left subtree has a value
< (or ≤) the root, every node is the right sub-tree has a value > (or ≥) the
root, and the left and right sub-trees, if non-empty, satisfy the same condition
recursively.
• An AVL tree is one satisfying the AVL condition: at each node, the absolute

value of the balance, the difference in height betwene the left and right subtrees,
is at most one.
• A heap is a binary tree satisfying the heap condition: the value at every node

is ≤ the value at the left and right children (and therefore ≤ the values in all
descendants).

Explain how an array of items can be converted into a heap, without needing any
extra storage for pointers etc. [12]

A. Regard the children of a(i) as a(2*i) and a(2*i+1) . Then we make this satisfy
the heap condition by the “sift up” process: every time the heap condition is locally
violated, we swap a(i) with the greater of a(2*i) and a(2*i+1). [bookwork, but
not in the book!]

Page 3 of 8 XX10190

Part B

3. In this question
(
a

p

)
denotes the Legendre symbol. If b = p1× p2× . . .× pn, where each

pi is a prime (possibly not all different), and hcf(a, b) = 1, then
[a
b

]
denotes the Jacobi

symbol, which is defined by[a
b

]
=
(
a

p1

)
×
(
a

p2

)
× · · · ×

(
a

pn

)
.

You should notice in particular that
[
a

p

]
=
(
a

p

)
if p is prime, and that 1109 is prime.

(a) Define the Legendre symbol
(
a

p

)
, explaining carefully what the allowable values of

a and p are. [2]

A.
(
a

p

)
is defined for p an odd prime and a ∈ Z with p not dividing a. It is 1 if a is a

square mod p and −1 if not.

(b) Show that 11 is a square mod 7 but 7 is not a square mod 11. Write down the rule
obeyed by Legendre symbols of which this is a case. [3]

A. 11 = 4 is a square mod 7. The non-zero squares mod 11 are 1, 4, 9, 16 = 5 and

25 = 3, which do not include 7. This is a case of quadratic reciprocity,
(
p

q

)
=
(
q

p

)
unless p = q = −1 mod 4.

(c) Using any rules for Legendre symbols that you know, calculate the Legendre symbol(
611
1109

)
. You may also use the fact that 611 = 13× 47. [7]

A.
(

611
1109

)
=
(

13
1109

)(
47

1109

)
=
(

1109
13

)(
1109
47

)
since 1109 = 1 mod 4. But

1109 = 4 mod 13 so
(

1109
13

)
= 1, and 1109 = 28 mod 47, so

(
1109
47

)
=
(

28
47

)
=(

4
47

)(
7
47

)
=
(

7
47

)
. Using QR again, that’s −

(
47
7

)
= −

(
5
7

)
= 1 (either use

QR yet again or notice that the squares mod 7 are 1, 4 and 2) so the answer is 1.

Question 3 continues on next page . . .

Page 4 of 8 XX10190

Question 3 continued . . .

(d) Show, by induction on n or otherwise, that
[
−1
b

]
= 1 if b = 1 mod 4 and −1 if

b = −1 mod 4. You may assume that
(
−1
p

)
= 1 if p = 1 mod 4 and −1 if p = −1

mod 4. [7]

A. For n = 1 there is nothing to prove. Otherwise, put b′ = p1 . . . pn−1. Then[a
b

]
=
[a
b′

][a
pn

]
so
[
−1
b

]
= 1 iff b′ (by induction) and pn are both 1 or both

−1 mod 4, i.e. if b = 1 mod 4.

(e) In fact the Jacobi symbol obeys the same rules as the Legendre symbol, including

quadratic reciprocity as long as a and b are odd. Using these rules, calculate
(

611
1109

)
again. You may not use the fact that 611 = 13 × 47, or do any other factorising
except for dividing by 2. [4]

A.
(

611
1109

)
=
[

611
1109

]
=
[

1109
611

]
=
[

498
611

]
. But this is

[
2

611

][
249
611

]
and

[
2

611

]
= −1

because 611 = 3 mod 8. Also
[

249
611

]
=
[

611
249

]
=
[

113
249

]
=
[

249
113

]
=
[

23
113

]
, and that

is
[

113
23

]
=
[
−2
23

]
=
[
−1
23

][
2
23

]
= (−1)×1 = −1. So the answer is (−1)×(−1) = 1.

Page 5 of 8 XX10190

4. (a) Explain briefly how to use Diffie-Hellman to send a message from Alice to Bob. You
may assume that the message comes from a subgroup G of F∗ for some finite field
F, and that the encryption method is exponentiation. [4]

A. Alice chooses an integer a coprime to N = |G| and uses Euclid’s algorithm to
compute an inverse a′ to a mod N . Bob does the same with b and b′. Then Alice
chooses a message m ∈ G and sends ma to Bob. He replies with (ma)b = mab, and
she computes (mab)a

′
= mb. She sends that back to Bob, who computes (mb)b

′
= m.

(b) How would you modify your use of the system so as to create a shared secret between
Alice and Bob, rather than sending a message? [2]

A. They choose m ∈ G at random, but publicly. Then Alice sends ma to Bob, and
Bob sends mb to Alice. Now Alice can compute (mb)a = mab and Bob can compute
(ma)b = mab, so their shared secret is mab.

(c) Now suppose that F = F83 and G = (F∗83)2. Suppose that Alice’s encryption key is
a = 7 and Bob’s encryption key is b = 13. Alice wants to send the message m = 17.
Illustrate your answer to part (a) by carrying out all the computations she and Bob
must do, including full details. [13]

A. Here N = 41. So a′ = 6 because 7 × 6 = 42 = 1 mod 41 and b′ = 19 (probably
by Euclid’s algorithm, but I observe that 3 × 13 = −2 so b′ = −3 × 2−1 =
−3 × 21 = −63 = −22 = 19 mod 41). Now Alice computes 177, by calculating
172 = 289 = 40 and 174 = 1600 = −60 = 23 so 177 = 174 × 172 × 17 =
40 × 23 × 17 = 920 × 17 = 7 × 17 = 119 = 36; Bob computes 3613 by computing
362 = 1296 = 51 = −32, 134 = 322 = 1024 = 28 and 138 = 282 = −46 = 37
so 3613 = 37 × 28 × 36 = 4 × 28 = 112 = 29; Alice computes 296 by computing
292 = 841 = 11 and 294 = 112 = 121 = 38 so 296 = 11× 38 = 418 = 3, and finally
Bob computes 319 by 32 = 9, 34 = 92 = 81 = −2, 38 = (−2)2 = 4, 316 = 42 = 16, so
319 = 16× 9× 3 = 144× 3 = −22× 3 = −66 = 17.

(d) Suppose that Alice and Bob are using a system as in part (b) only for creating
shared secrets, never for sending messages. Bob notices that in this case he never
actually does any decryption, so he thinks it is harmless to tell Fred his decryption
key as long as he keeps b secret. Is he right? Explain why, or show how Eve could
recover the secret if she knew how to decrypt messages sent by Bob. [2]

A. This is disastrous, because now Eve knows b′ and she computes an inverse to b′

mod N , which is b. Then when she sees Alice send ma to Bob, she simply computes
mab, just as Bob did.

(e) Alice and Bob have created a shared secret, but Alice has told Fred what it is.
Realising what she has done, she contacts Bob and they set up a new shared secret
using the same system. Is this all right? Explain why, or show how Eve could
recover the new secret. [2]

A. This is all right. Eve now knows m, ma, mb and mab but she can’t find Alice’s key
from that: if she could, so could Bob, because he knows all that too. So they can
safely start again with a different m′ – they may keep a and b.

Page 6 of 8 XX10190

5. (a) Say what is meant by the Fourier matrix Fm. What is the inverse matrix F−1
m ?

Justify your answer. [4]

A. Let ζ = e2πi/m be a primitive mth root of unity. Then (Fm)ij = ζij, where
0 ≤ i, j < m. The inverse matrix is Gm where (Gm)ij = 1

mζ
−ij. The reason is

that

(FmGm)ik =
1
m

m−1∑
j=0

ζijζ−jk

which is 1 if i = k because all the terms in the sum are 1, and is 0 if i 6= k because(∑m−1
j=0 ζ(i−k)j

)
(1− ζi−k) = 1− ζ(i−k)m = 0.

(b) Explain how to compute Fm tc in time O(m logm), where c = (c0, . . . , cm−1) and
tc is the corresponding column vector. You may assume that m is a power of 2 if
you wish. You should explain the process in your own words, and explain why it
is quick, but you are not required to provide a proof that the algorithm does have
complexity O(m logm). [6]

A. Assume that m = 2n is even and put y = Fm
tc. Then

yi =
2n−1∑
j=0

(F2n)ijcj =
2n−1∑
j=0

ζijcj .

Splitting this into even and odd parts gives

yi =
n−1∑
j=0

ζ2ijc2j + ζi
2n−1∑
j=0

ζ2ijc2j+1.

Writing c+ for the even subvector (c0, c2, . . .) and c− for the odd subvector, and
reading the lower indices mod n we get

yi =
n−1∑
j=0

ζijc+j + ζi
2n−1∑
j=0

ζ2ijc−j = (Fn tc+
j)i + ζi(Fn tc−j)i.

This allows us to do two Fn calculations instead of one F2n calculation, which means
that we can do an F2r calculation by doing about r calculations for F2, which is very
quick.

Question 5 continues on next page . . .

Page 7 of 8 XX10190

Question 5 continued . . .

(c) Illustrate your answer to part (b) by computing (F8
tc)5, where c =

(1, 0, 1,−1, 0, i, i,−1) ∈ C8. [Do not forget that the indexing starts from 0,
not 1.] [9]

A. The algorithm tells us that x = (F8
tc)5 = (F4

t(1, 1, 0, i))5 + ζ5(F4
t(0,−1, i,−1))5.

The 5 on the bottom is to be read as 1 mod 4 and ζ5 = −eπi/4. So we do the same
thing again and get

x = (F2
t(1, 0))1 + i(F2

t(1, i))1 − eπi/4
(
(F2

t(0, 1))1 + i(F2
t(−1,−1))1

)
.

Using F2 =
(

1 1
1 −1

)
this works out as x = 1+i(i−1)−eπi/4(−i+0) = 2+i−ieπi/4

(d) Write down a diagonal matrix ∆4 and a matrix P with only one non-zero entry in
each row and column, such that

F8 =
(
I ∆4

I −∆4

)(
F4 0
0 F4

)
P.

[4]

A. ∆4 has entries 1, ζ, ζ2, ζ3 and P has a 1 in the (j, 2j) places (0 ≤ j < 4) and the
(j, 2j − 7) places (j > 3).

JHD/GKS/AS Page 8 of 8 XX10190

