PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 0 - SOLUTIONS

1. Suppose that $m \mid n$ (remember: that says " m divides n " and it means that $\frac{n}{m}$ is an integer). Suppose that G is a cyclic group of order n, generated by g. Write down an element of G of order exactly m.
Simply $g^{n / m}$. In general it is not true that a group of order n contains a subgroup of order m if $m \mid n$, let alone an element of order m. It is true if $m=p$ is prime, but that uses the Sylow theorems which are beyond this course. But for cyclic groups, it's easy.
2. Compute $\varphi(24)$ and verify that $24=\sum_{d \mid 24} \varphi(d)$.
$\varphi(24)=24\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=8$. The divisors of 24 are $1,2,3,4,6,8,12,24$ and these have $\varphi(1)=\varphi(2)=1, \varphi(3)=\varphi(4)=\varphi(6)=2, \varphi(8)=\varphi(12)=4$ and $\varphi(24)=8$, and $1+1+2+2+2+4+4+8=24$.
3. Show that the group $(\mathbb{Z} / 24)^{*}$, where

$$
(\mathbb{Z} / 24)^{*}=\{a \in \mathbb{Z} / 24 \mid \operatorname{hcf}(a, 24)=1\}
$$

with multiplication mod 24 as the group operation, is not cyclic.
For instance because the elements 5, 7 and 11 all have order 2 - as indeed everything does except 1 . In the cyclic group $\mathbb{Z} / 8$ (with addition) there is only one element of order 2 (it is 4), and of course there is an element of order 8.

GKS, 21/2/17

