PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 1 – SOLUTIONS

1. Suppose that m and n are positive integers and hcf(m, n) = 1, and suppose that a and b are integers with $0 \le a < m$, $0 \le b < n$. How would you use Euclid's algorithm to find integers α and β such that $\alpha m + \beta n = a - b$? Hence explain how to find an integer N such that $N \equiv a \mod m$ and $N \equiv b \mod n$.

Euclid's algorithm finds λ and μ such that $\lambda m + \mu n = hcf(m, n) = 1$, so it is enough to take $\alpha = \lambda(a - b)$ and $\beta = \mu(a - b)$. Then take $N = \beta n + b = -\alpha m + a$.

2. Find a number N such that $N \equiv 94 \mod 105$ and $N \equiv 13 \mod 44$.

Doing it directly as above I got $\lambda = 13$ and $\mu = -31$ (with m = 105 and n = 44), hence $\alpha = 1053$ and $\beta = -2511$ and N = -110471. Adding $24 \times 105 \times 44$ to this gives the more sensible, but equally correct, answer of 409.

3. How many elements are there in \mathbb{F}_p^* ? Deduce that if $a \in \mathbb{Z}$ and p is a prime, then $a^p \equiv a \mod p$ (this is called Fermat's Little Theorem).

There are p-1. So if a is prime to p then we can think of a as being in $(\mathbb{Z}/p)^* = \mathbb{F}_p^*$, so $a^{p-1} = 1$ because the order of the element divides the order of the group. Now multiply both sides by a. If p|a then the equation just says 0 = 0.

4. $561 = 3 \times 11 \times 17$. Calculate $\phi(561)$. Every prime that divides $\phi(561)$ also divides $560 = 2^4 \times 5 \times 7$, which is what $\phi(561)$ would be if 561 were prime. In fact $(\mathbb{Z}/561)^*$ has no element of order 32: deduce that $a^{560} \equiv 1 \mod 561$ for every $a \in \mathbb{Z}$ coprime to 561 even though 561 is not prime.

 $\phi(561) = 561 \times \frac{2}{3} \times \frac{10}{11} \times \frac{16}{17} = 320$. But $320 = 64 \times 5$. Since there is no element of $(\mathbb{Z}/561)^*$ of order 32, every element is of order dividing 16×5 and therefore dividing 560. So $a^{560} = 1$ in $(\mathbb{Z}/561)^*$.

GKS, 7/3/17