PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 1 - SOLUTIONS

1. Suppose that m and n are positive integers and $\operatorname{hcf}(m, n)=1$, and suppose that a and b are integers with $0 \leq a<m, 0 \leq b<n$. How would you use Euclid's algorithm to find integers α and β such that $\alpha m+\beta n=a-b$? Hence explain how to find an integer N such that $N \equiv a \bmod m$ and $N \equiv b \bmod n$.
Euclid's algorithm finds λ and μ such that $\lambda m+\mu n=\operatorname{hcf}(m, n)=1$, so it is enough to take $\alpha=\lambda(a-b)$ and $\beta=\mu(a-b)$. Then take $N=\beta n+b=-\alpha m+a$.
2. Find a number N such that $N \equiv 94 \bmod 105$ and $N \equiv 13 \bmod 44$.

Doing it directly as above I got $\lambda=13$ and $\mu=-31$ (with $m=105$ and $n=44$), hence $\alpha=1053$ and $\beta=-2511$ and $N=-110471$. Adding $24 \times 105 \times 44$ to this gives the more sensible, but equally correct, answer of 409.
3. How many elements are there in \mathbb{F}_{p}^{*} ? Deduce that if $a \in \mathbb{Z}$ and p is a prime, then $a^{p} \equiv a$ $\bmod p$ (this is called Fermat's Little Theorem).
There are $p-1$. So if a is prime to p then we can think of a as being in $(\mathbb{Z} / p)^{*}=\mathbb{F}_{p}^{*}$, so $a^{p-1}=1$ because the order of the element divides the order of the group. Now multiply both sides by a. If $p \mid a$ then the equation just says $0=0$.
4. $561=3 \times 11 \times 17$. Calculate $\phi(561)$. Every prime that divides $\phi(561)$ also divides $560=2^{4} \times 5 \times 7$, which is what $\phi(561)$ would be if 561 were prime. In fact $(\mathbb{Z} / 561)^{*}$ has no element of order 32 : deduce that $a^{560} \equiv 1 \bmod 561$ for every $a \in \mathbb{Z}$ coprime to 561 even though 561 is not prime.
$\phi(561)=561 \times \frac{2}{3} \times \frac{10}{11} \times \frac{16}{17}=320$. But $320=64 \times 5$. Since there is no element of $(\mathbb{Z} / 561)^{*}$ of order 32 , every element is of order dividing 16×5 and therefore dividing 560 .
So $a^{560}=1$ in $(\mathbb{Z} / 561)^{*}$.
GKS, 7/3/17

