PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 2 – SOLUTIONS

1. Find a generator of the group \mathbb{F}_{31}^* , which we know to be cyclic. You should explain why the element you have written down is a generator. How many such generators should there be?

There should be $\varphi(30) = 8$ generators. One of them is 3 because $3^2 = 9$, $3^3 = -4$, $3^5 = 3^2 3^3 = -5$, $3^6 = 3^3 3^3 = 16$, $3^{10} = 3^5 3^5 = -6$ and $3^{15} = 3^5 3^{10} = -1$, which are all different from 1, so the order of 3 isn't be anything less than 30. But 2 doesn't work because $2^5 = 32 = 1$ so the order of 2 is 5, not 30. The other generators are 3^a with hcf(a, 30) = 1, i.e. $3^{\pm 1}$, $3^{\pm 7}$, $3^{\pm 11}$ and $3^{\pm 13}$, which are 3 and 21, 17 and 11, 13 and 12, and 24 and 22: any of these instead of 3 is also correct.

2. What are the finite subgroups of K^* if $K = \mathbb{Q}$, \mathbb{R} or \mathbb{C} ?

The trivial group and $\{\pm 1\}$; the trivial group and $\{\pm 1\}$; and $\{e^{2\pi i k/m}, k = 1, ..., m\}$ for each $m \in \mathbb{N}$.

3. Suppose that K is a field of characteristic p > 0. Show that $(a + b)^p = a^p + b^p$ for $a, b \in K$.

The binomial theorem gives this immediately once you notice that $\binom{p}{r}$ is divisible by p if p is prime and $1 \le r \le p-1$, because the factor of p in the p! is always there.

4. Again let K be a field of characteristic p and let $L = \{0, 1, 2, 3, ..., p-1\} \subset K$. (Here 2 is the name for the element $1 + 1 \in L$, and 3 = 2 + 1 etc. by definition. This is a field, called the prime subfield of K: it is isomorphic to \mathbb{F}_p .) Show that taking pth powers in K is linear over L: that is, if λ , $\mu \in L$ and a, $b \in K$ then $(\lambda a + \mu b)^p = \lambda a^p + \mu b^p$. As above, with the extra point that $\lambda^p = \lambda$ by Fermat's Little Theorem.

GKS, 14/3/17