PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 2 - SOLUTIONS

1. Find a generator of the group \mathbb{F}_{31}^{*}, which we know to be cyclic. You should explain why the element you have written down is a generator. How many such generators should there be?

There should be $\varphi(30)=8$ generators. One of them is 3 because $3^{2}=9,3^{3}=-4$, $3^{5}=3^{2} 3^{3}=-5,3^{6}=3^{3} 3^{3}=16,3^{10}=3^{5} 3^{5}=-6$ and $3^{15}=3^{5} 3^{10}=-1$, which are all different from 1, so the order of 3 isn't be anything less than 30 . But 2 doesn't work because $2^{5}=32=1$ so the order of 2 is 5 , not 30 . The other generators are 3^{a} with $\operatorname{hcf}(a, 30)=1$, i.e. $3^{ \pm 1}, 3^{ \pm 7}, 3^{ \pm 11}$ and $3^{ \pm 13}$, which are 3 and 21,17 and 11,13 and 12 , and 24 and 22: any of these instead of 3 is also correct.
2. What are the finite subgroups of K^{*} if $K=\mathbb{Q}, \mathbb{R}$ or \mathbb{C} ?

The trivial group and $\{ \pm 1\}$; the trivial group and $\{ \pm 1\}$; and $\left\{e^{2 \pi i k / m}, k=1, \ldots, m\right\}$ for each $m \in \mathbb{N}$.
3. Suppose that K is a field of characteristic $p>0$. Show that $(a+b)^{p}=a^{p}+b^{p}$ for $a, b \in K$.
The binomial theorem gives this immediately once you notice that $\binom{p}{r}$ is divisible by p if p is prime and $1 \leq r \leq p-1$, because the factor of p in the $p!$ is always there.
4. Again let K be a field of characteristic p and let $L=\{0,1,2,3, \ldots, p-1\} \subset K$. (Here 2 is the name for the element $1+1 \in L$, and $3=2+1$ etc. by definition. This is a field, called the prime subfield of K : it is isomorphic to \mathbb{F}_{p}.) Show that taking p th powers in K is linear over L : that is, if $\lambda, \mu \in L$ and $a, b \in K$ then $(\lambda a+\mu b)^{p}=\lambda a^{p}+\mu b^{p}$. As above, with the extra point that $\lambda^{p}=\lambda$ by Fermat's Little Theorem.

GKS, 14/3/17

