PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 3 - SOLUTIONS

1. Calculate by hand:
$\operatorname{hcf}(261,909) ; x \in \mathbb{Z}$ such that $x=12 \bmod 35$ and $x=-5 \bmod 47 ; 3^{108}$ in $\mathbb{F}_{97} ; 13^{46}$ in $\mathbb{F}_{103} ; 18^{-1}$ in \mathbb{F}_{73}^{*}.
You do not need either a calculator (well, maybe, just) or much space. If you are writing down big numbers, in five figures or more, you are doing it the very slow way.
$909=3 \times 261+126 ; 261=2 \times 126+9 ; 126=14 \times 9 . \operatorname{So} \operatorname{hcf}(909,261)=9$. (You could just spot the factor of 9 and stop there because you know that 101 is prime.)
We had the next one on an earlier sheet. First, do Euclid with 35 and 47 , so $47=35+12$ and $35=3 \times 12-1$ so $1=3 \times 12-35=3 \times(47-35)-35=3 \times 47-4 \times 35$. Now multiply up by $12-(-5)=17$ to get $51 \times 47-68 \times 35=17$. So $x=51 \times 47-5=68 \times 35+12$ does the job, but rather than work that out I will take away 47×35 and use $x=21 \times 35+12=747$. $3^{96}=1$ in \mathbb{F}_{97} by Fermat, so $3^{108}=3^{12}$. Let's be systematic: $12=8+4$ (1100 in binary) so $3^{2}=9,3^{4}=9^{2}=81=-16,3^{8}=(-16)^{2}=256=62$. Therefore $3^{12}=3^{8} \times 3^{4}=$ 62×-16. It's not hard to work that out directly, but I note that $-16=81$ and so $62 \times-16=62 \times 81=186 \times 27=-8 \times 27=-216=-22=75$.
Similarly, $46=32+8+4+2$ (binary 101110) so in \mathbb{F}_{103} we have $13^{2}=169=66$, then $13^{4}=66^{2}=36 \times 121=36 \times 18=108 \times 6=5 \times 6=30$, and $13^{8}=30^{2}=900=$ -27 , and $13^{16}=(-27)^{2}=9 \times 81=9 \times-22=-198=8$, and finally $13^{32}=64$. Therefore $13^{46}=64 \times-27 \times 30 \times 66$, which we could do directly: I would rather say that's $-39 \times-27 \times 30 \times-37=1053 \times-1110=23 \times-80=23 \times 23=529=14$.
For the last one, simply notice that $4 \times 18=72=-1$ so $18^{-1}=-4=69$.
2. Calculate the Legendre symbols

$$
\left(\frac{81}{101}\right),\left(\frac{-81}{101}\right),\left(\frac{18}{103}\right),\left(\frac{91}{277}\right) .
$$

81 is a square in \mathbb{Z} so the first one is 1 and the second one is equal to $\left(\frac{-1}{101}\right)$, which is 1 because $101=1 \bmod 4($ indeed $-1=100$ which is a square in $\mathbb{Z})$.
For the third one we have $\left(\frac{18}{103}\right)=\left(\frac{9}{103}\right)\left(\frac{2}{103}\right)=\left(\frac{2}{103}\right)$ (since 9 is a square in \mathbb{Z}) and $\left(\frac{2}{103}\right)=1$ because $103=-1 \bmod 8$.
For the last one we have $\left(\frac{91}{277}\right)=\left(\frac{7}{277}\right)\left(\frac{13}{277}\right)=\left(\frac{277}{7}\right)\left(\frac{277}{13}\right)$, because $277=1 \bmod 4$, by quadratic reciprocity. But $277=4 \bmod 13$ and 4 is a square, so $\left(\frac{277}{13}\right)=1$, and $277=4$ $\bmod 7$ too. $S o\left(\frac{91}{277}\right)=1$.
3. There are finite fields that are not \mathbb{F}_{p} : here is an example. In this question the constants are taken from the field \mathbb{F}_{3}.
Suppose that t satisfies $t^{3}-t+1=0$. Show that $t \notin \mathbb{F}_{3}$. Now let

$$
\mathbb{F}_{27}=\left\{a t^{2}+b t+c \mid a, b, c \in \mathbb{F}_{3}\right\} .
$$

Show that \mathbb{F}_{27} has 27 elements. Show that it is a field, with the usual addition and multiplication: you need to check that multiplying two elements of \mathbb{F}_{27} gives an element of \mathbb{F}_{27} and that a non-zero element of \mathbb{F}_{27} has an inverse.
Find a generator for the group \mathbb{F}_{27}^{*}.
\mathbb{F}_{27} has 27 elements because $(a, b, c) \mapsto a t^{2}+b t+c$ is a bijection $\mathbb{F}_{3}^{3} \rightarrow \mathbb{F}_{27}$. It's clearly onto: to show it's injective we need to check that $a t^{2}+b t+c=0$ implies $a=b=c=0$. So suppose $a t^{2}+b t+c=0$: we may assume that $a=1$, because if $a=0$ then t satisfies a linear equation over \mathbb{F}_{3}, which can only be $0=0$ if $t \notin \mathbb{F}_{3}$. But now

$$
x^{3}-x+1=(x-b)\left(x^{2}+b x+c\right)+l(x),
$$

where $l(x)$ is linear. Putting $x=t$ we get $l(t)=0$ so $l \equiv 0$ as before; but then putting $x=b$ we get $b^{3}-b+1=0$, which is not true for any $b \in \mathbb{F}_{3}$.
To check it's a field we need to show it's closed under multiplication and there are multiplicative inverses: everything else is obvious. Now

$$
\begin{aligned}
\left(a t^{2}\right. & +b t+c)\left(x t^{2}+y t+z\right) \\
& =a x t^{4}+(a y+b x) t^{3}+(a z+c x+b y) t^{2}+(b z+c y) t+c z \\
& =a x t(t-1)+(a y+b x)(t-1)+(a z+c x+b y) t^{2}+(b z+c y) t+c z \\
& =(a x+a z+c x+b y) t^{2}+(-a x+a y+b x+b z+c y) t+(-a y-b x+c z)
\end{aligned}
$$

so \mathbb{F}_{27} is closed under multiplication.
The quickest method now is to jump to the last part. Notice that even though we don't yet know that \mathbb{F}_{27} is a field, we do know that $t \in \mathbb{F}_{27}^{*}$, because its inverse is $1-t^{2}$. Moreover, $t^{2} \neq 0$ and

$$
t^{13}=\left(t^{3}\right)^{3} t^{3} t=(t-1)^{3} t^{3} t=\left(t^{3}-1\right) t^{3} t=(t+1)(t-1) t=t^{3}-t=-1
$$

so $t^{26}=1$, so the order of t must be 26. Since \mathbb{F}_{27} has 27 elements and one of them is zero, the order of \mathbb{F}_{27}^{*} is at most 26 , and since we've just found an element of order 26 it must be 26. So every non-zero element of \mathbb{F}_{27} is invertible (i.e. \mathbb{F}_{27} is indeed a field), and t is a generator for \mathbb{F}_{27}^{*}.

GKS, $21 / 3 / 17$

