PROGRAMMING AND DISCRETE MATHEMATICS (XX10190) SEMESTER 2 MATHEMATICS: PROBLEM SHEET 3 – SOLUTIONS

1. Calculate by hand:

hcf(261,909); $x \in \mathbb{Z}$ such that $x = 12 \mod 35$ and $x = -5 \mod 47$; 3^{108} in \mathbb{F}_{97} ; 13^{46} in \mathbb{F}_{103} ; 18^{-1} in \mathbb{F}_{73}^* .

You do not need either a calculator (well, maybe, just) or much space. If you are writing down big numbers, in five figures or more, you are doing it the very slow way.

 $909 = 3 \times 261 + 126$; $261 = 2 \times 126 + 9$; $126 = 14 \times 9$. So hcf(909, 261) = 9. (You could just spot the factor of 9 and stop there because you know that 101 is prime.)

We had the next one on an earlier sheet. First, do Euclid with 35 and 47, so 47 = 35 + 12and $35 = 3 \times 12 - 1$ so $1 = 3 \times 12 - 35 = 3 \times (47 - 35) - 35 = 3 \times 47 - 4 \times 35$. Now multiply up by 12 - (-5) = 17 to get $51 \times 47 - 68 \times 35 = 17$. So $x = 51 \times 47 - 5 = 68 \times 35 + 12$ does the job, but rather than work that out I will take away 47×35 and use $x = 21 \times 35 + 12 = 747$. $3^{96} = 1$ in \mathbb{F}_{97} by Fermat, so $3^{108} = 3^{12}$. Let's be systematic: 12 = 8 + 4 (1100 in binary) so $3^2 = 9$, $3^4 = 9^2 = 81 = -16$, $3^8 = (-16)^2 = 256 = 62$. Therefore $3^{12} = 3^8 \times 3^4 = 62 \times -16$. It's not hard to work that out directly, but I note that -16 = 81 and so $62 \times -16 = 62 \times 81 = 186 \times 27 = -8 \times 27 = -216 = -22 = 75$.

Similarly, 46 = 32 + 8 + 4 + 2 (binary 101110) so in \mathbb{F}_{103} we have $13^2 = 169 = 66$, then $13^4 = 66^2 = 36 \times 121 = 36 \times 18 = 108 \times 6 = 5 \times 6 = 30$, and $13^8 = 30^2 = 900 = -27$, and $13^{16} = (-27)^2 = 9 \times 81 = 9 \times -22 = -198 = 8$, and finally $13^{32} = 64$. Therefore $13^{46} = 64 \times -27 \times 30 \times 66$, which we could do directly: I would rather say that's $-39 \times -27 \times 30 \times -37 = 1053 \times -1110 = 23 \times -80 = 23 \times 23 = 529 = 14$.

For the last one, simply notice that $4 \times 18 = 72 = -1$ so $18^{-1} = -4 = 69$.

2. Calculate the Legendre symbols

$$\left(\frac{81}{101}\right), \left(\frac{-81}{101}\right), \left(\frac{18}{103}\right), \left(\frac{91}{277}\right).$$

81 is a square in \mathbb{Z} so the first one is 1 and the second one is equal to $\left(\frac{-1}{101}\right)$, which is 1 because $101 = 1 \mod 4$ (indeed -1 = 100 which is a square in \mathbb{Z}).

For the third one we have $\left(\frac{18}{103}\right) = \left(\frac{9}{103}\right)\left(\frac{2}{103}\right) = \left(\frac{2}{103}\right)$ (since 9 is a square in \mathbb{Z}) and $\left(\frac{2}{103}\right) = 1$ because $103 = -1 \mod 8$.

For the last one we have $\left(\frac{91}{277}\right) = \left(\frac{7}{277}\right) \left(\frac{13}{277}\right) = \left(\frac{277}{7}\right) \left(\frac{277}{13}\right)$, because 277 = 1 mod 4, by quadratic reciprocity. But 277 = 4 mod 13 and 4 is a square, so $\left(\frac{277}{13}\right) = 1$, and 277 = 4 mod 7 too. So $\left(\frac{91}{277}\right) = 1$.

3. There are finite fields that are not \mathbb{F}_p : here is an example. In this question the constants are taken from the field \mathbb{F}_3 .

Suppose that t satisfies $t^3 - t + 1 = 0$. Show that $t \notin \mathbb{F}_3$. Now let

$$\mathbb{F}_{27} = \{ at^2 + bt + c \mid a, b, c \in \mathbb{F}_3 \}.$$

Show that \mathbb{F}_{27} has 27 elements. Show that it is a field, with the usual addition and multiplication: you need to check that multiplying two elements of \mathbb{F}_{27} gives an element of \mathbb{F}_{27} and that a non-zero element of \mathbb{F}_{27} has an inverse.

Find a generator for the group \mathbb{F}_{27}^* .

 \mathbb{F}_{27} has 27 elements because $(a, b, c) \mapsto at^2 + bt + c$ is a bijection $\mathbb{F}_3^3 \to \mathbb{F}_{27}$. It's clearly onto: to show it's injective we need to check that $at^2 + bt + c = 0$ implies a = b = c = 0. So suppose $at^2 + bt + c = 0$: we may assume that a = 1, because if a = 0 then t satisfies a linear equation over \mathbb{F}_3 , which can only be 0 = 0 if $t \notin \mathbb{F}_3$. But now

$$x^{3} - x + 1 = (x - b)(x^{2} + bx + c) + l(x),$$

where l(x) is linear. Putting x = t we get l(t) = 0 so $l \equiv 0$ as before; but then putting x = b we get $b^3 - b + 1 = 0$, which is not true for any $b \in \mathbb{F}_3$.

To check it's a field we need to show it's closed under multiplication and there are multiplicative inverses: everything else is obvious. Now

$$(at^{2} + bt + c)(xt^{2} + yt + z)$$

= $axt^{4} + (ay + bx)t^{3} + (az + cx + by)t^{2} + (bz + cy)t + cz$
= $axt(t - 1) + (ay + bx)(t - 1) + (az + cx + by)t^{2} + (bz + cy)t + cz$
= $(ax + az + cx + by)t^{2} + (-ax + ay + bx + bz + cy)t + (-ay - bx + cz)$

so \mathbb{F}_{27} is closed under multiplication.

The quickest method now is to jump to the last part. Notice that even though we don't yet know that \mathbb{F}_{27} is a field, we do know that $t \in \mathbb{F}_{27}^*$, because its inverse is $1 - t^2$. Moreover, $t^2 \neq 0$ and

$$t^{13} = (t^3)^3 t^3 t = (t-1)^3 t^3 t = (t^3-1)t^3 t = (t+1)(t-1)t = t^3 - t = -1$$

so $t^{26} = 1$, so the order of t must be 26. Since \mathbb{F}_{27} has 27 elements and one of them is zero, the order of \mathbb{F}_{27}^* is at most 26, and since we've just found an element of order 26 it must be 26. So every non-zero element of \mathbb{F}_{27} is invertible (i.e. \mathbb{F}_{27} is indeed a field), and t is a generator for \mathbb{F}_{27}^* .

GKS, 21/3/17