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THE COMPUTATION OF CONICAL DIFFRACTION
COEFFICIENTS IN HIGH-FREQUENCY

ACOUSTIC WAVE SCATTERING∗

B. D. BONNER† , I. G. GRAHAM† , AND V. P. SMYSHLYAEV†

Abstract. When a high-frequency acoustic or electromagnetic wave is scattered by a surface
with a conical point, the component of the asymptotics of the scattered wave corresponding to
diffraction by the conical point can be represented as an asymptotic expansion, valid as the wave
number k → ∞. The diffraction coefficient is the coefficient of the principal term in this expansion
and is of fundamental interest in high-frequency scattering. It can be computed by solving a family of
homogeneous boundary value problems for the Laplace–Beltrami–Helmholtz equation (parametrized
by a complex wave number–like parameter ν) on a portion of the unit sphere bounded by a simple
closed contour �, and then integrating the resulting solutions with respect to ν. In this paper we
give the numerical analysis of a method for carrying out this computation (in the case of acoustic
waves) via the boundary integral method applied on �, emphasizing the practically important case
when the conical scatterer has lateral edges. The theory depends on an analysis of the integral
equation on �, which shows its relation to the corresponding integral equation for the planar Helmholtz
equation. This allows us to prove optimal convergence for piecewise polynomial collocation methods
of arbitrary order. We also discuss efficient quadrature techniques for assembling the boundary
element matrices. We illustrate the theory with computations on the classical canonical open problem
of a trihedral cone.
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1. Introduction. When an incident plane acoustic or electromagnetic wave is
scattered by a bounded impenetrable (three-dimensional) obstacle, the asymptotic
behavior of the scattered wave when the frequency is large is described by the classical
geometric theory of diffraction (GTD) [28]. The asymptotics of the scattered field
when the wave number k → ∞ is known from the GTD to be composed of a number
of components corresponding to “reflections” or “diffractions” by particular parts
of the boundary. Along with the component corresponding to simple reflection of
nongrazing incident waves at smooth parts of the obstacle, or a more complicated
grazing incidence which leads to asymptotics in the shadow [27] and special boundary-
layer asymptotics in the “penumbra” (see, e.g., [7] and the references therein), the
scattered wave’s asymptotics may also contain components arising from diffraction
by nonsmooth “singular” points of the scattering surface, such as edges or conical
points. From the GTD [28] (and its further developments), the principal parts of
those components are known to be described by the (diffracted component of the) far
field of waves scattered by the tangent cone at the singular point(s). This is due to the
so-called principle of localization (which is the essence of the GTD). Many authors
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have considered the problem of describing the asymptotics of the diffracted wave for
various “canonical” cones (see, e.g., [12, 15, 16, 11, 6] and the references therein).

This problem has been studied in detail when the obstacle is a cone with a smooth
lateral surface, and ideal boundary conditions are applied; see, e.g., [12, 6] and the ref-
erences therein, where explicit formulae for the principal asymptotics of the diffracted
wave were derived. (By “ideal” we mean pure Dirichlet or Neumann boundary con-
ditions in the acoustic case and perfectly conducting boundary conditions in the elec-
tromagnetic case. See [9, 2, 10] for some results on nonideal boundary conditions.)

For example, consider the scalar (acoustic) case, with an incident plane wave
U inc(x) = exp(−ikω0 ·x), with the point ω0 ∈ S2 (the unit sphere in R

3), describing
the direction of incidence. Then both the scattered wave Usc and the total wave
U := U inc +Usc satisfy the three-dimensional Helmholtz equation, (Δ+ k2)U = 0, in
the domain of propagation, and Usc satisfies an appropriate version of the radiation
conditions. The theory in [33, 4, 6] describes the behavior of the diffracted component
Udiff (x) of Usc(x) at any point x in the domain of propagation. Using spherical
coordinates centered at the conical point—x = rω with ω ∈ S2 and r > 0 denoting
the distance of x from the conical point—it follows from the general recipes of the
GTD that (with either Dirichlet or Neumann conditions imposed on the surface of
the scatterer) Udiff has the asymptotic representation

Udiff (x, k,ω0) = 2π
exp(ikr)

kr
f(ω,ω0) + O((kr)−2), k → ∞.(1.1)

Here the distribution f(ω,ω0), which is infinitely smooth everywhere except at the
so-called singular directions (where it is typically infinite), is the important diffrac-
tion coefficient (also known as the kernel of the scattering matrix) and describes the
intensity of the diffracted wave in the particular direction ω. (See, e.g., [6, 13] and
the references therein for precise descriptions of the distributional spaces.)

This paper deals with the numerical analysis and implementation of methods for
computing f(ω,ω0). Following [4] and [6], to obtain a formula for f , we take O to be
the vertex of the conical obstacle, Ξ (which is indicated by dotted lines in Figure 1),
and let M denote the portion of the unit sphere S2 which is exterior to Ξ. M is a
submanifold of S2 with boundary, which we denote by � (see Figure 1 again). Let
Δ∗ denote the Laplace–Beltrami operator on S2 and introduce the spherical Green’s
function g(ω,ω0, ν) on M (also known as a “spectral function”), satisfying

(Δ∗ + ν2 − 1/4)g(ω,ω0, ν) = δ(ω − ω0), ω,ω0 ∈ M and ν ∈ C ,(1.2)

where δ denotes the Dirac delta function and the differentiation on the left-hand side
is with respect to ω. As a function of ω, g is also required to satisfy a Dirichlet
or Neumann boundary condition on � (whichever is given in the original scattering
problem). Once g is known, the diffraction coefficient in (1.1) is then given by the
formula (see [33, 6])

f(ω,ω0) = lim
s→0+

i

π

∫
γ

exp(−iνπ − sν)g(ω,ω0, ν)νdν.(1.3)

The integrals in (1.3) are known to converge uniformly as s → 0+ away from the
singular directions; cf. [8]. The infinite integration contour γ in (1.3) has to be chosen
in the complex plane, so that the (positive) numbers

√
λj (where λj ranges over all

eigenvalues of the self-adjoint operator −Δ∗ + 1/4 on M , subject to the appropriate
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Fig. 1. Geometry of obstacle.
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Fig. 2. Contour of integration.

boundary condition on �) lie on its right and also so that when Re(ν) → ∞, along
γ, Im(ν) → ±a for some constant a > 0 (see [6]). The function g(ω,ω0, ν) is known
from spectral theory to be analytic in ν, except for poles at ν =

√
λj , provided

ω �= ω0—see Figure 2.

Thus the computational procedure for realizing the asymptotic formula (1.1) re-
quires the following: (i) the computation of the Green’s function g(ω,ω0, ν) for all
required incidence directions ω0 and observation directions ω ∈ M and (ii) the com-
putation of the integral in (1.3) for sufficiently small positive s, by quadrature. Note
that (ii) in turn implies that g(ω,ω0, ν) must be evaluated for sufficiently many ν ∈ γ
to ensure an accurate answer.

The Green’s function g in (1.3) can be replaced (see [33, 4]) by its regular part
gr := g−g0, where g0 is the (known) fundamental solution for the operator (Δ∗+ν2−
1/4) on all of S2 (see section 2). Moreover, for certain configurations of ω,ω0 (which,
say, in the case of a smooth, fully illuminated, and convex cone corresponds to the
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direction of observation ω with no reflected wave [33, 4, 25]—see (2.1) for a precise
statement), the right-hand side of (1.3) can be transformed by deforming the contour
of integration γ onto the imaginary axis and then interchanging the limit with the
integral. These modifications yield the simpler formula

f(ω,ω0) = − i

π

∫ ∞

−∞
exp(τπ)gr(ω,ω0, iτ)τdτ,(1.4)

with the integral convergent absolutely. In fact it can be shown (see [13, section 6.4]
and the references therein) that

exp(τπ)gr(ω,ω0, iτ) ∼
{

exp(α1τ) , τ → −∞ ,
exp(−α2τ) , τ → ∞ ,

(1.5)

where α1, α2 are positive numbers depending on the location of ω and ω0, provided
ω and ω0 satisfy the technical condition (2.1) below.

The configurations of ω and ω0 for which the formulation (1.4) is possible are
described by a geometrical condition (see [6, section 2.3]). All our computations in
this paper are for cases in which (1.4) is valid. In other cases one must compute the
limit (1.3) as it stands, leading to a more complicated approximation problem directly
employing (1.3) with sufficiently small s [6].

In [4] and [6] a numerical method was proposed for the computation of (1.4)
and (1.3). The boundary integral method was used to compute gr. (gr satisfies the
homogeneous PDE (Δ∗ + ν2 − 1/4)gr(ω,ω0, ν) = 0, on the manifold M , subject to
an inhomogeneous boundary condition on its boundary �.) This was implemented in
[4] and [6] in the case when Ξ is a smooth cone (i.e., � is a smooth contour) using,
in effect, a simple trapezoidal-Nyström-type integral equation solver combined with
the trapezoidal rule for computing (1.3) or (1.4). The approach of [33, 4, 6] was also
extended to the electromagnetic case [34], which was implemented numerically in [5].

The papers [4] and [6] contained no convergence analysis of the method and,
moreover, dealt only with the case of a smooth cone Ξ. The case of a cone with lateral
edges is of fundamental importance in both the high-frequency theory of diffraction
(where it is one of the unsolved canonical problems [28]) and in practice, where high-
frequency scattering by antennas or corners of buildings is a key problem in microwave
engineering. In such cases � contains corners.

Although the integral equation method reduces the computation of g(ω,ω0, ν) to
a computation on the (one-dimensional) contour � on the surface of the unit sphere S2,
this equation has to be solved many times for different values of ν (and also more times
if different ω and ω0 are to be considered). Moreover, as we shall see, the evaluation
of the kernel in the integral equation arising from the spherical PDE (1.2) is much
more costly than for typical boundary integral equations in planar scattering theory.
Thus there is strong practical demand for the development of an efficient algorithm,
in particular one which solves the integral equation with the highest accuracy and the
minimal number of kernel evaluations. Thus the purposes of this paper are as follows:

(i) To propose an efficient method for computing diffraction coefficients which is
robust even when the cone Ξ has lateral edges and to analyze its convergence.

(ii) To minimize the number of kernel evaluations required in the implementation.
(iii) To demonstrate its use in the computation of diffraction coefficients in several

sample cases.
The plan of the paper is as follows. In section 2 we describe briefly the boundary

integral method for computing gr. This leads to nonstandard integral equations posed
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on the spherical contour �, which possibly contains corners. In section 3 we obtain
the important properties of the integral operators which arise, including the case
when the cone Ξ has lateral edges. In section 4 we describe a flexible numerical
method based on collocation with piecewise polynomials and prove its convergence as
a means of approximating gr(ω,ω0, ν). Finally in section 5 we provide computations
of diffraction coefficients for several sample problems. We also give in section 5 outline
descriptions of various technical issues such as the computation of the contour integral
in (1.3) and the evaluation of the kernel which appears in the integral operator.
In particular, we note that because of the exponential decay (1.5), the domain of
integration in (1.4) can be replaced by [−N1, N2] with Ni = O(r log(n)) at the cost of
an error of O(1/nr). Therefore very large values of Ni (equivalently very large values
of |τ |) are not required in our computations.

Although this paper considers only diffraction coefficients for acoustic scatter-
ing, the related and more difficult electromagnetic case is described in [13] and the
references therein.

2. Formulae for the conical diffraction coefficients. Throughout the paper
we shall assume that the cone Ξ has a finite number of smooth (analytic) faces, joined
at lateral edges, and that the angle between pairs of adjacent faces lies in (0, 2π) (i.e.,
cuspoid edges are excluded). As in [13], we also assume that M and S2\M are simply
connected subsets of S2 and that the contour � is a simple closed curve, consisting of a
finite number of analytic arcs, also joined at noncuspoid corners. (For much of what
we are going to do below, weaker smoothness assumptions away from edges would
suffice, but we suppress this extra generality in the interest of readability.)

For ω,ω′ ∈ S2 we define θ(ω,ω′) to be the geodesic distance between two points
ω and ω′ on the sphere S2 (i.e., cos θ(ω,ω′) = ω · ω′, 0 ≤ θ(ω,ω′) ≤ π). The
configurations of ω and ω0 which ensure that (1.3) can be rewritten as (1.4) can now
be described (for a convex fully illuminated cone) by the following condition (see also
[33]):

θ1(ω,ω0) := min
ω′∈�

{θ(ω,ω′) + θ(ω′,ω0)} > π.(2.1)

When θ1(ω,ω0) ≤ π the formula (1.3) may either be undefined on the so-called
singular directions or have to be interpreted in an appropriate distributional sense;
for more details see [6, 25, 8]. We will not discuss this here, but the reader may refer to
[6] and [13] for more detail, including the case when the cone is not fully illuminated.

As mentioned in section 1, the regular part gr of the Green’s function g in (1.2)
is defined by

gr(ω,ω0, ν) = g(ω,ω0, ν) − g0(ω,ω0, ν),(2.2)

where g0 is given by

g0(ω,ω′, ν) = − 1

4 cos(πν)
Pν− 1

2
(− cos θ(ω,ω′)),(2.3)

with Pk denoting the Legendre special function of the first kind of index k (see, e.g.,
[1, p. 332]). It is well known (see, e.g., [33, 4, 6]) that g0 satisfies

(Δ∗ + ν2 − 1/4)g0(ω,ω′, ν) = δ(ω − ω′) , ω,ω′ ∈ S2(2.4)

(where the differentiation is with respect to ω); i.e., it is the fundamental solution for
the operator Δ∗ + ν2 − 1/4 on all of the sphere S2. Comparing (2.4) and (1.2), we
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see that for each ω0 ∈ M and ν ∈ C, the function gr, as a function of ω, satisfies the
homogeneous PDE (see [4, 6])

(Δ∗ + ν2 − 1/4)gr(ω,ω0, ν) = 0, ω ∈ M ,(2.5)

subject to the boundary condition on �,

either gr(ω,ω0, ν) = −g0(ω,ω0, ν), the Dirichlet case
or (∂gr/∂m)(ω,ω0, ν) = −(∂g0/∂m)(ω,ω0, ν), the Neumann case

}
for all ω ∈ � .

(2.6)
The boundary condition to be imposed on gr is inherited from the boundary condition
imposed on the original scattering problem. In (2.6) and throughout the paper, we
make use of the following notational convention.

Notation 2.1. With each ω ∈ �, not a corner point, we associate a unit normal
m = m(ω) to � at ω which lies in the plane tangent to the unit sphere S2 at ω
and is oriented outward from M . We also associate with ω the unit tangent to � at ω
denoted by t = t(ω), oriented so that t(ω), m(ω), ω form an orthogonal right-handed
triple (see Figure 3). (We usually suppress the dependence on ω from the notation
for simplicity.) Then ∂/∂m denotes the (outward) normal derivative with respect to
ω ∈ �. For any other point ω′ in �, we analogously define the unit normal and tangent
vectors m′ and t′ and normal derivative ∂/∂m′.

The problem (2.5), (2.6) can now be solved by an integral equation method on
�. Here we follow the classical indirect approach, e.g., [3], adapted to the present
problem in [4] and [6], although we note that a direct approach based on Green’s
formula would also be possible.

In the Dirichlet case, we seek the solution in the form of a double layer potential,

gr(ω,ω0, ν) =

∫
�

∂g0

∂m′ (ω,ω′, ν)u(ω′, ν)dω′, ω ∈ M .(2.7)

Taking limits as ω tends to the contour � in (2.7) and using the jump conditions of
the double layer potential and the Dirichlet boundary condition from (2.6), we obtain
the second-kind integral equation:

1

2
u(ω, ν) +

∫
�

∂g0

∂m′ (ω,ω′, ν)u(ω′, ν)dω′ = −g0(ω,ω0, ν)(2.8)

for all smooth points ω ∈ l. This equation is given in [4]. A rigorous justification
for potential theory on manifolds with smooth boundaries is given in a very general
context in [19]. For corner points the factor 1/2 has to be replaced by a factor related
to the corner angle; cf. [14]. However, since we will estimate errors for our boundary
integral equations in L2-type spaces, these points are unimportant. Notice that since
ω ∈ � and ω0 ∈ M , the right-hand side (2.8) is never singular.

Analogously, the Neumann problem is solved with the single layer potential:

gr(ω,ω0, ν) =

∫
�

g0(ω,ω′, ν)u(ω′, ν)dω′, ω ∈ M .(2.9)

Taking the normal derivative and fitting the boundary condition leads to

−1

2
u(ω, ν) +

∫
�

∂g0

∂m
(ω,ω′, ν)u(ω′, ν)dω′ = −∂g0

∂m
(ω,ω0, ν) .(2.10)
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We can write (2.8), (2.10) (almost everywhere) in operator form as(
I + LB

)
u = bB , with (LBu)(ω) =

∫
�

LB(ω,ω′)u(ω′)dω′ , B = D,N,(2.11)

with solution u(ω, ν) abbreviated by u(ω). In the Dirichlet case the data are

bD(ω) := −2g0(ω,ω0, ν) , LD(ω,ω′) := 2
∂g0

∂m′ (ω,ω′, ν) ,(2.12)

and in the Neumann case,

bN (ω) := 2
∂g0

∂m
(ω,ω0, ν), LN (ω,ω′) := −2

∂g0

∂m
(ω,ω′, ν) .(2.13)

Although the operators in (2.11), with the kernels from (2.12) or (2.13), are not
classical, we will show that their properties are analogous to those of the standard
layer potentials for the Helmholtz equation on the boundary of a planar domain.

3. Integral operators.

3.1. Preliminary results. The aim of this subsection is to identify the principal
parts of the kernels LD and LN . This is done in Theorem 3.3. To prove this we need
two technical lemmas.

Lemma 3.1. Using Notation 2.1, we have

LD(ω,ω′) =
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) t′.(ω ∧ ω′) ,(3.1)

LN (ω,ω′) = − 1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) t.(ω′ ∧ ω) .(3.2)

Proof. By employing spherical polar coordinates ω′=(sin θ′cosφ′, sin θ′sinφ′, cos θ′)T,
for any v : S2 → R, we have the representation

∂v

∂m′ (ω
′) = ∇ω′ {v ◦ ω′} · m′ ,

where ∇ω′ is the spherical gradient

∇ω′ =
1

sin θ′
eφ′

∂

∂φ′ + eθ′
∂

∂θ′
,

with

eφ′ = (− sinφ′, cosφ′, 0)T and eθ′ = (cos θ′ cosφ′, cos θ′ sinφ′,− sin θ′)T .

Since cos θ(ω,ω′) = ω · ω′, we have

∂

∂m′Pν− 1
2
(− cos θ(ω,ω′)) = −P ′

ν− 1
2
(− cos θ(ω,ω′)) ∇ω′ {ω · ω′} · m′.(3.3)

Now an easy calculation shows that

∇ω′

{
ω · ω′

}
· m′ =

{
(ω · eφ′) eφ′ + (ω · eθ′) eθ′

}
· m′ = ω · m′.
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Thus from (3.3), (2.3), and (2.12), we have

LD(ω,ω′) =
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) ω · m′ .(3.4)

Since t′, m′, and ω′ form a right-handed triple, we have m′ = ω′ ∧ t′, and so

LD(ω,ω′) =
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ω,ω′)) ω · (ω′ ∧ t′) ,

which is equivalent to (3.1) by cyclic permutation. Since LN (ω,ω′) = −LD(ω′,ω),
(3.2) follows easily.

The next lemma identifies the asymptotic behavior of P ′
ν+ 1

2

(x) for x close to −1.

In Theorem 3.3, we will combine this with (3.1), (3.2) to identify the behavior of LD

and LN near ω = ω′.
Lemma 3.2. For all k ∈ C, Pk(x) is an analytic function of x ∈ (−1, 3). More-

over, for x ∈ (−3, 1),

Pk(x) = ak(x) log

(
1 + x

2

)
+ bk(x),

where ak(x) and bk(x) are both analytic on (−3, 1), with

ak(−1) =
sin(πk)

π
and bk(−1) =

sin(πk)

π
{ψ(k) + ψ(−k − 1) + 2γ},

where ψ(k) = −γ −
∑∞

r=1(1/(k + r) − 1/r) and γ is the Euler constant [1, p. 255].
Proof. From [1, equation (8.1.2)] we get the following representation of Pk:

Pk(x) = F

(
−k, k + 1; 1;

1 − x

2

)
,(3.5)

where F is the hypergeometric function. It follows from [1, p. 556] that F (−k, k +
1; 1; z) is a convergent power series for −1 ≤ z < 1. Therefore, by (3.5), Pk(x)
is analytic for x ∈ (−1, 3) and in particular for x ∈ (−1, 1). This proves the first
statement in the theorem.

Furthermore, from [24, Chapter V, equation (53)] we have that

Pk(x) = ak(x) log

(
1 + x

2

)
+ bk(x),

where

ak(x) =
sin(πk)

π
F (−k, k + 1; 1; (1 + x)/2)(3.6)

and

bk(x) =
sin(πk)

π

{
[ψ(k) + ψ(−k − 1) + 2γ]F (−k, k + 1; 1; (1 + x)/2)

+
∞∑
r=1

B(k, r)φ(k, r)

(
1 + x

2

)r}
.(3.7)
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Here

B(k, r) =
(−k) . . . (−k + r − 1)(k + 1) . . . (k + r)

(r!)2

and

φ(k, r) =

r∑
j=1

{
2k(k + 1) + j

(j2 − k2 − k − j)j

}
.

As remarked above, F (−k, k + 1; 1; (1 + x)/2) is a convergent power series for
−1 ≤ (1+x)/2 < 1, so ak(x) is analytic for x ∈ (−3, 1). Moreover ak(−1) = sin(πk)/π
follows from [1, p. 556]).

Turning to bk, it is clear that the first term on the right-hand side of (3.7) is also
analytic for x ∈ (−3, 1) and that the assertions about bk will then follow, provided
the domain of convergence of the power series

∞∑
r=1

B(k, r)φ(k, r)

(
1 + x

2

)r

(3.8)

can be shown to be (−3, 1). To obtain this result, note that limr→∞ φ(k, r) is clearly
finite. If limr→∞ φ(k, r) �= 0, then it follows that |φ(k, r + 1)/φ(k, r)| → 1 as r → ∞.
Then

lim
r→∞

|B(k, r + 1) φ(k, r + 1)((1 + x)/2)r+1|
|B(k, r) φ(k, r)((1 + x)/2)r|

=
∣∣∣1 + x

2

∣∣∣ lim
r→∞

∣∣∣ (−k + r)(k + r + 1)

(r + 1)2
φ(k, r + 1)

φ(k, r)

∣∣∣ =
∣∣∣1 + x

2

∣∣∣,(3.9)

and (3.8) is convergent for x ∈ (−3, 1) by the ratio test. However, if limr→∞ φ(k, r) =
0, then, for large enough r, |φ(k, r)| < 1. Since (3.9) also shows that the power series∑∞

r=1 B(k, r)((1 + x)/2)r converges for x ∈ (−3, 1), the comparison test then ensures
that (3.8) also converges for x ∈ (−3, 1).

We now combine Lemmas 3.1 and 3.2 to obtain the following theorem.
Theorem 3.3. Recall Notation 2.1.
(i) For ω,ω′ ∈ �,

LD(ω,ω′) = −t′ · (ω ∧ ω′)

π|ω − ω′|2 + FD(ω,ω′),(3.10)

LN (ω,ω′) =
t · (ω′ ∧ ω)

π|ω − ω′|2 + FN (ω,ω′),(3.11)

where FD and FN are bounded functions on �× �.
(ii) When ω is not a corner point of �,

t′ · (ω ∧ ω′)

π|ω − ω′|2 and
t · (ω′ ∧ ω)

π|ω − ω′|2(3.12)

are both C∞ functions of ω′ in a neighborhood of ω and, for B = D or N ,

FB(ω,ω′) = O(|ω − ω′|2 log |ω − ω′|) as ω′ → ω .(3.13)
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Proof. We give the proof for LD; the argument for LN is analogous.
(i) From Lemma 3.2 with k = ν − 1/2, we have, for x ∈ (−1, 1),

P ′
ν− 1

2
(x) =

− cos(πν)

π

{
1

x + 1

}
+ r(x),(3.14)

where

r(x) =

[
aν− 1

2
(x) − aν− 1

2
(−1)

x− (−1)
+ a′ν− 1

2
(x) log

(
x + 1

2

)
+ b′ν− 1

2
(x)

]
.(3.15)

Also note that since ω,ω′ ∈ S2, we have

− cos θ(ω,ω′) + 1 = −ω.ω′ + 1 =
1

2
|ω − ω′|2 .(3.16)

Hence

P ′
ν− 1

2
(− cos θ(ω,ω′)) = − 2 cos(πν)

π|ω − ω′|2 + r(−1 + |ω − ω′|2/2).(3.17)

Therefore combining (3.1) with (3.15) and (3.17), we obtain the formula (3.10),
where

FD(ω,ω′) =
1

2 cos(πν)
r(−1 + |ω − ω′|2/2) t′ · (ω ∧ ω′) .(3.18)

To complete the proof of (i) we now show that FD is bounded on � × �. To do
this, choose a fixed δ satisfying 0 < δ < π/2 and first consider ω,ω′ in the range

0 ≤ θ(ω,ω′) ≤ π − δ .(3.19)

Then there exists ε > 0 such that −1 ≤ − cos θ(ω,ω′) ≤ 1 − ε, and hence it follows
from (3.16) that

−1 ≤ −1 + |ω − ω|2/2 ≤ 1 − ε.(3.20)

Substituting (3.15) into (3.18) we obtain

2 cos(πν)FD(ω,ω′)

= t′ · (ω ∧ ω′)

{
aν− 1

2
(−1+|ω − ω′|2/2)− aν− 1

2
(−1)

|ω − ω′|2/2 + b′ν− 1
2
(−1+|ω − ω′|2/2)

}
(3.21)

+ a′ν− 1
2
(−1 + |ω − ω′|2/2)

{
t′ · (ω ∧ ω′) log(|ω − ω′|2/4)

}
.(3.22)

Recall from Lemma 3.2 that aν− 1
2

and b′
ν− 1

2

are both analytic on (−3, 1). Since

|ω − ω′|2 is a smooth function of ω,ω′, it follows that the terms inside the braces in
(3.21) are smooth functions of ω,ω′ ∈ �. Moreover

|t′ · (ω ∧ ω′)| ≤ |t′||ω ∧ ω′| = sin θ(ω,ω′) = {1 − cos2 θ(ω,ω′)}1/2

= {1 − (ω · ω′)2}1/2 = {(1 − ω · ω′)(1 + ω · ω′)}1/2

=
1

2
|ω − ω′||ω + ω′|,(3.23)
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which ensures the boundedness of (3.21). The boundedness of (3.22) follows in a
similar way, using (3.23) and the analyticity of a′

ν− 1
2

on (−3, 1).

To complete the proof, consider the case when (3.19) fails, i.e., π−δ ≤ θ(ω,ω′) ≤
π. For this case recall from (3.5) that Pν−1/2(x) is analytic for x ∈ (−1, 3). Therefore
(3.1) implies that LD(ω,ω′) is bounded for π − δ ≤ θ(ω,ω′) ≤ π. Thus setting

FD(ω,ω) = LD(ω,ω′) +
t′ · (ω ∧ ω′)

π|ω − ω′|2

ensures that (3.10) holds, with FD(ω,ω) bounded for π − δ ≤ θ(ω,ω′) ≤ π.
(ii) Now suppose that ω is not a corner point and that ω′ is sufficiently close to ω

so as to ensure that there is no corner point between ω and ω′ on �. Let ρ denote an
arclength parameterization of � from any fixed reference point; then setting ω = ρ(s),
the unit tangent t at ω is given by t = ρs(s), the derivative of ρ(s). Then for ω′ near
ω with ω′ = ρ(σ), we have

|ω − ω′|/|s− σ| = O(1) and |s− σ|/|ω − ω′| = O(1) as σ → s.(3.24)

Also,

ω ∧ ω′ = ρ(s) ∧ ρ(σ) = (ρ(s) − ρ(σ)) ∧ ρ(σ).

Hence

t′ · (ω ∧ ω′) = ρs(σ) · ((ρ(s) − ρ(σ) − (s− σ)ρs(σ)) ∧ ρ(σ)).(3.25)

Since |ω−ω′|2 = (ρ(s)−ρ(σ))·(ρ(s)−ρ(σ)), it follows that (3.12) are smooth functions
as σ → s (i.e., ω′ → ω). Moreover (3.24) and (3.25) imply that |t′ · (ω ∧ ω′)| =
O(|ω − ω′|2) and so (3.13) follows from (3.21) and (3.22).

We see from Theorem 3.3 that if there are no corner points on �, then LD and
LN are bounded (in fact continuous), so in both the Dirichlet and Neumann cases
the integral operator LB will be compact on most standard spaces, e.g., C(�), L2(�).
Then standard stability proofs for the numerical method will follow. However, if �
does contain a corner, compactness is lost and so another approach is needed to show
stability of a numerical method. The approach we will use is to compare the integral
operator LB with a corresponding plane Laplace integral operator KB and then use
stability results which are known for the planar Laplace problem. This is done in the
following subsection.

3.2. Relation to planar Laplace case. To simplify the presentation, we as-
sume that the contour � has one corner which we will denote by the point ωc ∈ S2.
The case of several corners is obtained analogously. Without loss of generality, we
assume ωc = (0, 0, 1)T . Suppose that ρ(s) travels around � with M on the right-hand
side (as indicated by the arrow in Figure 3), as s travels from −Λ to Λ, where 2Λ is
the length of �. Then we can introduce the wedge w in the tangent plane to S2 at ωc

as follows.
Definition 3.4. The wedge w is defined to be the union of two straight line

segments: w = w− ∪ w+, where

w− = {(0, 0, 1)T + st−c : s ∈ [−Λ, 0]}, w+ = {(0, 0, 1)T + st+
c : s ∈ [0,Λ]},

and t±c = lims→0± ρs(s) (see Figure 3). The angle between the tangents t+
c and −t−c

is measured “counterclockwise” about the z axis (when viewed from outside the sphere)
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λπ
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w+

�
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ω

x

n m

t

ωc

Fig. 3. Wedge w and contour �.

from w+ to w− and is denoted λπ, where λ ∈ (0, 2)\{1}. Without loss of generality
we choose our coordinate system so that t+

c is in the direction of the x axis. Each
x = st±c ∈ w± can be associated with a unique ω = ρ(s) ∈ �, and with a unit normal
m at ω ∈ � orientated outward from M . To x we associate a unit normal n to w in
the plane tangent to S2 at ωc, orientated so that n ·m → 1 as s → 0. (See Figure 3.)

The fundamental solution of Laplace’s equation on the plane is (1/2π) log |x−x′|.
Using this we introduce the operators

(KBu)(x) =

∫
w

KB(x,x′)u(x′)dx′ , B = D,N .

Analogously to (2.12), (2.13), the Dirichlet and Neumann kernels are

KD(x,x′) :=
1

π

∂

∂n′ {log |x − x′|} = − (x − x′) · n′

π|x − x′|2 ,(3.26)

KN (x,x′) := − 1

π

∂

∂n
{log |x − x′|} = − (x − x′) · n

π|x − x′|2 .(3.27)

Here n,n′ are unit normals to ω at x,x′ ∈ w, as described in Definition 3.4.
Theorem 3.5 will show that the principal singularity of LB near ω = ω′ = ωc

is the same as KB near x = x′ = ωc. This is useful because the properties of the
integral operator KB with kernel KB are well understood [17, 14, 20, 22, 31].

To prepare for Theorem 3.5, we use the arclength parameterization, ρ(σ), of �,
introduced above, to rewrite (2.11) on [−Λ,Λ]. Putting ω = ρ(s) and ω′ = ρ(σ) we
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obtain

(I + L̂B)û = b̂B , with (L̂Bû)(s) =

∫ Λ

−Λ

L̂B(s, σ)û(σ)dσ, s ∈ [−Λ,Λ],(3.28)

where û(s) = u(ρ(s)). In the case of Dirichlet boundary data, using (2.12) and Lemma
3.1 we have

b̂D(s) := −2g0(ρ(s),ω0, ν) and

L̂D(s, σ) :=
1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ρ(s),ρ(σ))) ρs(σ) · (ρ(s) ∧ ρ(σ)).(3.29)

(Note that since ρ is the arclength parameterization, the Jacobian satisfies |ρs(σ)| = 1
and therefore does not appear explicitly in the kernel.) For Neumann boundary data,
using (2.13) and Lemma 3.1 we obtain

b̂N (s) := 2
∂g0

∂m(s)
(ρ(s),ω0, ν) and

L̂N (s, σ) := − 1

2 cos(πν)
P ′
ν− 1

2
(− cos θ(ρ(s),ρ(σ))) ρs(s) · (ρ(σ) ∧ ρ(s)),(3.30)

where m(s) is the corresponding normal to � at ρ(s).
If we now denote the arclength parameterization of w by r, with r(−Λ) =

(0, 0, 1)T −Λt−c , r(0) = ωc, and r(Λ) = (0, 0, 1)T +Λt+
c , then we can also rewrite KB

as an operator:

(K̂Bû)(s) =

∫ Λ

−Λ

K̂B(s, σ)û(σ)dσ, s ∈ [−Λ,Λ] , B = D,N ,

where, from (3.26), (3.27),

K̂D(s, σ):= − (r(s) − r(σ)) · n(σ)

π|r(s) − r(σ)|2 ,(3.31)

K̂N (s, σ):= − (r(s) − r(σ)) · n(s)

π|r(s) − r(σ)|2(3.32)

for the Dirichlet and Neumann problems, respectively. Here n(σ) is the normal to w

at x = r(σ). The following theorem shows that K̂B contains the principal singularity

of L̂B near the corner point s = σ = 0 in both the Dirichlet and Neumann cases,
B = D,N .

Theorem 3.5. Let B = D or N . Then for (s, σ) ∈ [−Λ,Λ]× [−Λ,Λ], L̂B(s, σ)−
K̂B(s, σ) is a bounded function.

Proof. We give the proof for the case B = D. The case B = N is analogous.
First we consider the kernel K̂D. From Definition 3.4 the parametric equation, r, for
w is given by

r(σ) =

{
(−σ cos(λπ),−σ sin(λπ), 1)T , σ ∈ [−Λ, 0],
(σ, 0, 1)T , σ ∈ [0,Λ].

(3.33)

Notice that if −Λ ≤ s, σ ≤ 0 or 0 ≤ s, σ ≤ Λ, then r(s) and r(σ) lie on the same

arm of w, and so it follows from (3.31) that K̂D(s, σ) = 0 and, by Theorem 3.3(ii),
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L̂D(s, σ) is bounded. So we have to consider only the case when s and σ are on
different sides of 0.

First consider the case −Λ ≤ s ≤ 0 ≤ σ ≤ Λ. Then (3.33) implies that r(s) −
r(σ) = (−s cos(λπ)−σ,−s sin(λπ), 0)T and n(σ) = (0, 1, 0)T . Therefore (r(s)−r(σ))·
n(σ)= −s sin(λπ) and |r(s) − r(σ)|2= s2 + 2sσ cos(λπ) + σ2. So from (3.31),

K̂D(s, σ) =
1

π

s sin(λπ)

(s2 + 2sσ cos(λπ) + σ2)
, −Λ ≤ s ≤ 0 ≤ σ ≤ Λ.(3.34)

A similar calculation shows analogously that

K̂D(s, σ) = − 1

π

s sin(λπ)

(s2 + 2sσ cos(λπ) + σ2)
, −Λ ≤ σ ≤ 0 ≤ s ≤ Λ.(3.35)

Now we turn our attention to the kernel, L̂D(s, σ). Using Taylor’s theorem we
can write the parameterization ρ as

ρ(σ) =

{
r(σ) + σ2(α1(−σ), β1(−σ), γ1(−σ))T , σ ∈ [−Λ, 0],
r(σ) + σ2(α2(σ), β2(σ), γ2(σ))T , σ ∈ [0,Λ],

(3.36)

where αi(s), βi(s), and γi(s) are smooth functions on [0,Λ] for i = 1, 2. Thus, for
−Λ ≤ s ≤ 0 ≤ σ ≤ Λ, we have, from (3.36),

ρ(s) ∧ ρ(σ) = (−s sin(λπ), s cos(λπ) + σ, 0)T + O(max{|s|, |σ|}2)

as max{|s|, |σ|} → 0. Hence with ω = ρ(s) and ω′ = ρ(σ), we have

t′ = ρs(σ) = (1, 0, 0)T + O(|σ|) ,(3.37)

−t′ · (ω ∧ ω′) = s sin(λπ) + O(max{|s|, |σ|}2) ,

and |ω − ω′|2 = s2 + 2sσ cos(λπ) + σ2 + O(max{|s|, |σ|}3)(3.38)

as max{|s|, |σ|} → 0. Therefore we have, from (3.10),

L̂D(s, σ) =
sin(λπ)

π

s + η2(s, σ)

s2 + 2sσ cos(λπ) + σ2 + η3(s, σ)
+ F̂D(s, σ),

where F̂D(s, σ) = FD(ρ(s),ρ(σ)) and

ηi(s, σ) = O(max{|s|, |σ|}i), i = 2, 3.(3.39)

Hence, for −Λ ≤ s ≤ 0 ≤ σ ≤ Λ,

(L̂D − K̂D)(s, σ) =
sin(λπ)

π

{
s + η2(s, σ)

s2 + 2sσ cos(λπ) + σ2 + η3(s, σ)

− s

s2 + 2sσ cos(λπ) + σ2

}
+ F̂D(s, σ),(3.40)

which is clearly continuous for (s, σ) �= (0, 0).

In order to show that (L̂D − K̂D)(s, σ) is bounded near (s, σ) = (0, 0) we need
to show that the limit (as (s, σ) → (0, 0)) of the first term on the right-hand side of
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(3.40) is bounded. We do this for 0 < −s ≤ σ. The case 0 < σ ≤ −s is analogous. To
obtain the result, write

s + η2(s, σ)

s2 + 2sσ cos(λπ) + σ2 + η3(s, σ)
− s

s2 + 2sσ sin(λπ) + σ2

=
η2(s, σ)(s2 + 2sσ cos(λπ) + σ2) − η3(s, σ)s

(s2 + 2sσ cos(λπ) + σ2)(s2 + 2sσ cos(λπ) + σ2 + η3(s, σ))

=
η2(s,σ)

σ2 (( s
σ )2 + 2 s

σ cos(λπ) + 1) − η3(s,σ)
σ3

s
σ

(( s
σ )2 + 2 s

σ cos(λπ) + 1)(( s
σ )2 + 2 s

σ cos(λπ) + 1 + η3(s,σ)
σ2 )

.(3.41)

Now, when 0 < −s ≤ σ we have 0 < |s| ≤ |σ| and from (3.39) it follows that
η2(s, σ)/σ2 = O(1), η3(s, σ)/σ3 = O(1), and η3(s, σ)/σ2 → 0 as (s, σ) → (0, 0).
Moreover, since λ ∈ (0, 2)\{1}, we have

x2 + 2x cos(λπ) + 1 ≥ sin2(λπ) > 0 for all x ∈ R .

Combining all these facts with (3.41) shows that the first term in (3.40) is bounded

as (s, σ) → (0, 0). Since F̂D is a bounded function, it follows that L̂D(s, σ)− K̂D(s, σ)
is bounded for −Λ ≤ s ≤ 0 ≤ σ ≤ Λ.

For −Λ ≤ σ ≤ 0 ≤ s ≤ Λ the result follows analogously.
We shall analyze (3.28) in the space L2[−Λ,Λ], equipped with the norm ‖v‖L2[−Λ,Λ]

= {
∫ Λ

−Λ
|v(σ)|2dσ}1/2. This allows us to cover the Neumann and Dirichlet problems

in a unified setting. (There is a corresponding theory in the space L∞[−Λ,Λ] which
applies to the Dirichlet problem but not to the Neumann problem.) The next result
follows directly from Theorem 3.5, using, e.g., [26, p. 326].

Corollary 3.6. For B = D or N , L̂B−K̂B is a compact operator on L2[−Λ,Λ].
The remainder of this section is devoted to proving the well-posedness of (3.28)

in L2[−Λ,Λ]. This is done in Corollary 3.8. Since L̂B is a compact perturbation of

K̂B, the key part of the proof of Corollary 3.8 is contained in the following theorem,
which is of key importance also when we come to the numerical analysis in section 4.

Theorem 3.7. For B = D or N , (I+K̂B)−1 exists and is bounded on L2[−Λ,Λ].
Proof. Since the proof follows standard procedures for dealing with Mellin convo-

lution operators, we will be brief. More detail is in [13]. The first step is to write the

operator v �→ (I + K̂B)v on L2[−Λ,Λ] as two coupled convolution operators on [0,Λ].
For (w1, w2) ∈ L2[0,Λ]×L2[0,Λ] we introduce the norm ‖(w1, w2)‖ = {‖w1‖2

L2[0,Λ] +

‖w2‖2
L2[0,Λ]}1/2. Also we define the map Π : L2[−Λ,Λ] → L2[0,Λ] × L2[0,Λ] by

Πv := (v1, v2), where v1(s) = v(−s) + v(s) and v2(s) = v(−s) − v(s), s ∈ [0,Λ].

Clearly Π is a bijection and ‖Πv‖2 = 2‖v‖2
L2[−Λ,Λ]. Moreover, an elementary calcula-

tion using (3.34) and (3.35) and the analogous kernels for B = N (see [13] for details)
shows that

ΠK̂B = K̃BΠ, B = D or N.(3.42)

Here K̃B is the matrix operator

K̃B =

(
K̃B 0

0 −K̃B

)
,
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and K̃B is the Mellin convolution operator on L2[0,Λ] defined by

(K̃Bv)(s) =

∫ Λ

0

κ̃B(s/σ)v(σ)
dσ

σ
,

with kernels

κ̃D(s) = − sin(λπ)

π

s

1 − 2s cosλπ + s2
, κ̃N (s) =

sin(λπ)

π

1

1 − 2s cosλπ + s2
.

Hence, for all v ∈ L2[−Λ,Λ], we have

(I + K̂B)v = Π−1(I + K̃B)Πv.(3.43)

It can be shown, using Mellin integral transform techniques [20], that ‖K̃B‖L2[0,Λ] < 1

(see [13] for further details). Hence by Banach’s lemma I± K̃B has a bounded inverse
on L2[0,Λ] and the result follows from (3.43).

Corollary 3.6 and Theorem 3.7 can now be combined to obtain the well-posedness
of (2.11) via the Fredholm alternative. The proof requires the injectiveness of (I+L̂B);
i.e., we need to show that for all ν on the contour γ (see Figure 2), the implication

(I + L̂B)û = 0 ⇒ û = 0 for û ∈ L2[−Λ,Λ](3.44)

holds.
This implication is established in a standard way using uniqueness results for

boundary-value problems for the PDE Δ∗+ν2−1/4 on the manifolds M and S2\{M∪
�} and the jump relations for the corresponding layer potentials on �. The uniqueness
can be easily established because the contour γ is constructed to avoid the eigenvalues
of −Δ∗ + 1/4, while the jump relations may be found in [19] or [4] for the case of
smooth �, and a standard local analysis at corners will provide the extension of the
jump relations to corner domains.

Corollary 3.8. For B = D or N , (I + L̂B)−1 exists and is bounded on
L2[−Λ,Λ].

Proof. Using Theorem 3.7, the left-hand equation in (3.28) can be rewritten as

(I + (I + K̂B)−1(L̂B − K̂B))û = (I + K̂B)−1b̂B .(3.45)

Since, by Corollary 3.6, (I + K̂B)−1(L̂B − K̂B) is a compact operator, it follows
from the Fredholm alternative and the injectiveness property (3.44) that (3.45) has a
unique solution. It also follows that the operator on the left-hand side of (3.45) has a
bounded inverse. Therefore,

‖û‖L2[−Λ,Λ] ≤ C‖(I + K̂B)−1b̂‖L2[−Λ,Λ] ≤ C ′‖b̂B‖L2[−Λ,Λ]

for some constants C and C ′, and the result follows.
Remark 3.9. If the cone Ξ contains more than one lateral edge, then the contour

� will contain several corners. All the results of this subsection remain true in this
case. In particular the analogue of Corollary 3.8 ensures the well-posedness of (3.28),
or equivalently (2.11) in the multiple corner case. The proof is entirely analogous to
the proof above, except that a pair of coupled Mellin convolution equations local to
each corner has to be considered. Such systems are standard—see, e.g., [14].
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Remark 3.10. The operator L̂B depends on the parameter ν, and further anal-
ysis will be required if one wishes to obtain a “stability bound” (i.e., a bound on

‖(I − L̂B)−1‖L2[−Λ,Λ] as a function of ν). However, we note that for the case ν = iτ
the corresponding Helmholtz operator on the plane was analyzed in [30], where a sta-
bility bound independent of τ was proved. The case ν = iτ is particularly important
in our computations—see section 5.

4. Numerical method. In this section we shall discuss the piecewise polyno-
mial collocation method for (3.28) and obtain its convergence, using the results of
section 3. We also describe briefly its efficient implementation. The performance of
this scheme will be illustrated in section 5.

The basic collocation scheme is entirely standard, so we will be brief. First intro-
duce a mesh:

−Λ = x0 < x1 < · · · < xm < xm+1 < · · · < xn = Λ .(4.1)

We assume here that � has a single corner situated at xm = 0 in parameter space and
that n = 2m. The case of several corners is similar (see Remark 3.9 and the remarks
below (4.5)), and that of a smooth boundary is straightforward (see [13]). We define
Ii = [xi−1, xi] and hi = xi − xi−1 for i = 1, . . . , n. We assume that for each integer
r ≥ 1, we have chosen, a priori, r points: 0 < ξr1 < ξr2 < · · · < ξrr < 1. Then we
introduce the approximation space

Sr
n[−Λ,Λ] = {v ∈ L∞[−Λ,Λ] : v|Ii ∈ Pr} ,(4.2)

where Pr denotes the set of polynomials of order r ≥ 1 (i.e., of degree r−1). Also, on
each Ii, we define the r collocation points xr

ij = xi−1 + hiξ
r
j , and we define the basis

functions of Sr
n[−Λ,Λ] by

φij(x) =

⎧⎪⎨⎪⎩
∏

1≤k≤r

k �=j

x− xr
ik

xr
ij − xr

ik

χi(x) when r > 1

χi(x) when r = 1

for j = 1, . . . , r and i = 1, . . . , n, where χi is the characteristic function on Ii. Clearly
φij |Ii ∈ Pr and φij(xi′j′) = δii′δjj′ .

In the collocation method for (3.28), we seek an approximate solution

ûn(s) :=

n∑
i=1

r∑
j=1

μijφij(s),

where μij are chosen so that the residual vanishes at the collocation points:

μi′j′+

n∑
i=1

r∑
j=1

μij

∫
Ii

L̂B(xr
i′j′ , σ)φij(σ)dσ = b̂B(xr

i′j′) for i′ = 1, . . . , n , j′ = 1, . . . , r .

(4.3)
Equivalently,

(I + P̂nL̂B)ûn = P̂nb̂B ,(4.4)

where P̂n denotes the operator onto Sr
n[−Λ,Λ] defined by interpolation at the points

{xi,j}. Because the ξrj are chosen interior to [0, 1], none of the points xij are corner

points, and so P̂nL̂Bûn and P̂nb̂B are well-defined in (4.3).
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In the h version of the collocation method (with r fixed and n → ∞), we adopt
the usual a priori mesh grading:

xm±i = ±(i/m)qΛ for i = 0, . . . ,m,(4.5)

where q ≥ 1 is the grading exponent. Note that the corner point in parameter space
(xm = 0) is a mesh point. This is important. If � has several corners, we would
simply use meshes like (4.5) local to each corner, joined together with quasi-uniform
refinement away from the corners in an obvious way.

To obtain the stability of the collocation scheme, we need the concept of a mod-
ification parameter i∗ ≥ 0 (first introduced in [14]). The modified collocation scheme
is exactly the same as (4.3) when i∗ = 0. But when i∗ ≥ 1, ûn is set to 0 on each
of the subintervals Ii, i = m− i ∗ +1, . . . ,m + i∗, and equations (4.3) are required to
hold only for i′ �∈ {m − i ∗ +1, . . .m + i∗}. (In other words, the collocation solution
is set to 0 on each of the 2i∗ subintervals nearest the corner and (4.3) is not required
to hold on those subintervals.) For notational convenience we shall continue to write
the collocation equations as (4.4), thus suppressing i∗ from the notation.

Theorem 4.1. Let r and q be fixed and let B = D or N . Then there exists a
modification parameter i∗ ≥ 1 independent of n, and a constant C which may depend
on r, q, and i∗ but not on n such that ‖(I + P̂nL̂B)−1|Sr

n[−Λ,Λ]‖L2[−Λ,Λ] ≤ C for all
sufficiently large n; i.e., the collocation method (4.4) is stable in L2[−Λ,Λ].

Proof. We shall show that, for each ε > 0, there exists a modification such that,
for n sufficiently large,

‖(I − P̂n)L̂Bvn‖L2[−Λ,Λ] ≤ ε‖vn‖L2[−Λ,Λ](4.6)

for all vn ∈ Sr
n[−Λ,Λ]. Then, since

I + P̂nL̂B = (I + L̂B) − (I − P̂n)L̂B ,

existence and stability of (I + P̂nL̂B)−1 on Sr
n[−Λ,Λ] follow from Corollary 3.8.

To obtain (4.6), note that by the triangle inequality,

‖(I − P̂n)L̂Bvn‖L2[−Λ,Λ] ≤ ‖(I − P̂n)K̂Bvn‖L2[−Λ,Λ](4.7)

+‖(I − P̂n)(L̂B − K̂B)vn‖L2[−Λ,Λ].

Now recall that P̂n projects to zero on the 2i∗ intervals nearest 0. Thus

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2[−Λ,Λ] ≤ ‖(L̂B − K̂B)vn‖2

L2[xm−i∗,xm+i∗]

+‖(I − P̂n)(L̂B − K̂B)vn‖2
L2([−Λ,Λ]\[xm−i∗,xm+i∗]).

(4.8)

By Theorem 3.5, L̂B − K̂B is a bounded function, and this implies that (L̂B − K̂B)
is compact from L2[−Λ,Λ] to L∞[−Λ,Λ] (see [26, pp. 534–535]). Thus the first term
on the right-hand side of (4.8) may be estimated by

‖(L̂B − K̂B)vn‖2
L2[xm−i∗,xm+i∗] ≤ 2xm+i∗‖(L̂B − K̂B)vn‖2

L∞[xm−i∗,xm+i∗]

≤ Cn−q‖vn‖2
L2[−Λ,Λ].(4.9)

(Throughout the proof, C denotes a generic constant which is independent of n but
may depend on the other parameters.)
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We now consider the second term on the right-hand side of (4.8). First we write

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2([−Λ,Λ]\[xm−i∗,xm+i∗]) =

∑
i≤m−i∗

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

+
∑

i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

.

(4.10)

We will estimate the second sum in (4.10). (The first sum can be dealt with in
a similar way.) To do this we recall the standard results for piecewise polynomial
interpolation and write∑
i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

≤ C
∑

i≥m+i∗+1

h2
i ‖D(L̂B − K̂B)vn‖2

L2(Ii)

≤ C
∑

i≥m+i∗+1

h3
i ‖s−1sD(L̂B − K̂B)vn‖2

L∞(Ii)
.

It can be shown, using the same argument as in the proof of Theorem 3.5, that the
operator sD(L̂B − K̂B) has a bounded kernel. Hence, noting that hi ≤ Cn−1, we
obtain∑

i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

≤ Cn−1
∑

i≥m+i∗+1

(hix
−1
i−1)

2‖vn‖2
L2[−Λ,Λ]

≤ C max
i≥m+i∗+1

(hix
−1
i−1)

2‖vn‖2
L2[−Λ,Λ].(4.11)

Now for i ≥ i ∗ +1, (4.5) implies

hm+i =
( i

m

)q

Λ −
( i− 1

m

)q

Λ ≤ qΛ
1

m

( i

m

)q−1

.

Hence, since i∗ satisfies i∗ ≥ 1,

hm+ix
−1
m+i−1 ≤ q

1

m

( i

m

)q−1( m

i− 1

)q

≤ Cq
1

i− 1
≤ Cq

1

i∗ .(4.12)

By substituting (4.12) into (4.11) it follows that∑
i≥m+i∗+1

‖(I − P̂n)(L̂B − K̂B)vn‖2
L2(Ii)

≤ C
( 1

i∗

)2

‖vn‖2
L2[−Λ,Λ].

A similar estimate holds for the first sum in (4.10) and so

‖(I − P̂n)(L̂B − K̂B)vn‖L2([−Λ,Λ]\[xm−i∗,xm+i∗]) ≤ C
1

i∗‖vn‖L2[−Λ,Λ]

≤ ε

2
‖vn‖L2[−Λ,Λ](4.13)

for sufficiently large i∗.
By (4.7), (4.8), (4.9), and (4.13), we see that to prove (4.6) it is sufficient to

prove it with L̂B replaced by K̂B. However, this follows from now-classical results
about numerical methods for Mellin convolution equations. To explain briefly, we first
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employ the operators Π and K̃B defined in the proof of Theorem 3.7, as well as the
fact that the mesh (4.1) is symmetric about 0, to obtain ΠP̂nK̂B = P̃nK̃BΠ, where

P̃n =

(
P̃n 0

0 P̃n

)
,

with P̃n defined as the restriction of P̂n to functions on [0,Λ]. Since (I − P̂n)K̂B =

Π−1(I − P̃n)K̃BΠ, the result follows if, for all ε > 0, there exists a modification i∗
such that

‖(I − P̃n)K̃Bvn‖L2[0,Λ] ≤ ε‖vn‖L2[0,Λ](4.14)

for all vn ∈ Sr
n[0,Λ] and for sufficiently large n. However, result (4.14) follows (even

for all n) from the general results in the survey [22]. (See Theorem 3.1 there, and the
remarks following it. Note that κ̃B and κ̃N both satisfy conditions (A1) and (A2) of
[22], with p = 2.) See [23, 14, 20] and also [13] for more details.

Remark 4.2. The introduction of the parameter i∗ is solely a device to prove
stability of the collocation method for (2.11) when � contains a corner. No unmod-
ified practical collocation method has ever been observed to be unstable. However,
the proof that these methods are stable without modification has eluded researchers
for 15 years. For this reason, and to simplify the presentation, we assume that The-
orem 4.1 holds for i∗ = 0 (i.e., no modification) for the remainder of this section.
All the following results also hold for i∗ ≥ 1, but the proofs require slightly different
technicalities.

Theorem 4.1 implies that the collocation equation (4.4) is uniquely solvable for
all n sufficiently large. An easy manipulation using (3.28) and (4.4) shows that (I +

P̂nL̂B)(P̂nû− ûn) = −P̂nL̂B(I − P̂n)û. Theorem 4.1 then implies

‖P̂nû− ûn‖L2[−Λ,Λ] ≤ C‖P̂nL̂B(I − P̂n)û‖L2[−Λ,Λ].(4.15)

After some technical manipulations using properties of L̂B = K̂B + (L̂B − K̂B) it can
be shown that the right-hand side of (4.15) can be bounded by a constant multiple of

‖(I − P̂n)û‖L2[−Λ,Λ] (see [13]). Then the triangle inequality implies

(4.16)

‖û− ûn‖L2[−Λ,Λ] ≤ ‖û− P̂nû‖L2[−Λ,Λ] + ‖P̂nû− ûn‖L2[−Λ,Λ] ≤ C‖(I − P̂n)û‖L2[−Λ,Λ].

Therefore to obtain convergence rates we need estimates for ‖(I − P̂n)û‖L2[−Λ,Λ].
These of course depend on the regularity of the solution. To describe this regularity
we introduce the weighted Sobolev space for an interval J ⊂ R and for k ∈ N and
α ∈ R,

L2,k
α (J) = {v : |x|j−αDjv ∈ L2(J), j = 0, 1, . . . , k},

equipped with the norm ‖v‖L2,k
α (J) =

∑k
j=0 ‖xj−αDjv‖L2(J) (see [20]).

Examples 4.3.

(i) The function

û(x) = C ′ + C ′′|x|θ, where 1/2 < θ < 1,(4.17)

satisfies û(x) − C ′ ∈ L2,k
α [−Λ,Λ] for all k ≥ 0 and α < θ + 1/2.
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(ii) The function

û(x) = C|x|θ−1, where 1/2 < θ < 1,(4.18)

satisfies û(x) ∈ L2,k
α [−Λ,Λ] for all k ≥ 0 and α < θ − 1/2.

Remark 4.4. When we solve the Dirichlet problem for the Laplace equation in
the region interior to a planar polygon using the indirect boundary integral method,
the solution of the resulting integral equation has its principal singularity in the form
(4.17), where the corner is at x = 0 and θ = 1/(1 + |χ|), where(1 − χ)π is the angle
between the tangents at the corner (χ ∈ (−1, 1)\{0}). When we solve the Neumann
problem with the same geometry again using the indirect boundary integral method,
the density has its principal singularity in the form (4.18), again with θ = 1/(1 + |χ|)
(see, e.g, [17, 23, 20]). It can be shown by standard local analysis (see, e.g., [32]) that
the solutions of our integral equations have the same principal singularity as identified
in Examples 4.3.

Estimates for ‖(I − P̂n)û‖L2[−Λ,Λ] under assumptions which encapsulate Exam-
ples 4.3(i) and (ii) are well known (see, e.g., [22]). Combining these with (4.16), we
obtain the final result given below (see also [13] for more details).

Theorem 4.5. Consider the collocation method (4.4) and assume that stability
holds in the sense of Theorem 4.1.

(i) Suppose that B = D and that the exact solution to (3.28) satisfies û − C ′ ∈
L2,r
α [−Λ,Λ] with 1 < α < 3/2. Then for sufficiently large n the collocation method

described by (4.4) converges with error

‖û− ûn‖L2[−Λ,Λ] ≤ Cn−r‖û− C ′‖L2,r
α [−Λ,Λ] as n → ∞,(4.19)

provided the grading parameter q ≥ max{r/α, 1}.
(ii) Suppose that B = N and that the exact solution to (3.28) satisfies û ∈

L2,r
α [−Λ,Λ] for some 0 < α < 1/2. Then for sufficiently large n the collocation

method described by (4.4) converges with error

‖û− ûn‖L2[−Λ,Λ] ≤ Cn−r‖û‖L2,r
α [−Λ,Λ] as n → ∞,(4.20)

provided the grading parameter q ≥ r/α.
The implementation of the collocation method (4.3) requires the efficient calcu-

lation of the stiffness matrix entries

L̂i′j′,ij :=

∫
Ii

L̂B(xr
i′j′ , σ)φij(σ)dσ.(4.21)

Each evaluation of the kernel L̂B in (4.21) requires an evaluation of (the derivative)
of the Legendre function with complex index (see (3.29), (3.30)). We do this by
integrating Legendre’s differential equation using a Runge–Kutta method (cf. [4, 5,
6, 18]—details are in [13]). Thus efficient quadrature methods for (4.21) are of the
utmost importance. This is especially true when we remember that (2.11) needs to
be solved many times over (for different values of ν on the imaginary axis) in order to
allow the approximate integration of (1.4). The main difficulty in evaluating (4.21)
is the singularity which arises when i′ = i. (This is strongest when Ii contains the
origin in parameter space, corresponding to the corner on �.) In [13] a detailed study
of quadrature for (4.21) is carried out. Here we have room to mention only the most
useful result from [13], as follows.
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Theorem 4.6. Suppose the collocation points xr
ij , j = 1, . . . , r, are chosen to be

the r Gauss–Legendre points on [0, 1], shifted to Ii. Suppose that (4.21) is approxi-
mated by the Gauss–Legendre rule based at these points for all i, i′ satisfying

dist(I ′i, Ii) ≥ h
1/(r+2)
i ,(4.22)

and the remaining entries of (4.21) are computed exactly. Then the O(n−r) conver-
gence rate reported in Theorem 4.5 continues to hold.

Since φij vanishes at all the points xr
ik, except k = j, the implementation of the

rule in Theorem 4.6 requires only one kernel evaluation, and (4.22) shows that this can
be done for most of the matrix as the mesh is refined. It also turns out that even when
(4.22) is not satisfied, rules with O(log(n)) kernel evaluations can be employed and
the O(n−r) rate in Theorem 4.5 remains unperturbed—for more details see section 5
and also [13].

5. Numerical results. We shall illustrate the performance of the numerical
method described above in the case of the diffraction of acoustic waves by a trihedral
cone. In the diffraction literature this is an unsolved canonical problem; i.e., it is a
relatively simple geometry which often occurs in applications, but there is no known
closed form expression for the diffraction coefficients.

Our trihedral cone is determined by three edges which emanate from the origin
and pass through the points ωci ∈ S2, i = 1, 2, 3, which are specified by spherical
polar coordinates (θ∗, 0), (θ∗, 2π/3), and (θ∗, 4π/3), respectively, where cos θ∗ = 1/

√
3.

Hence the edges are mutually perpendicular. The conical scatterer Ξ therefore has
its surface composed of three mutually perpendicular planar segments determined by
each pair of edges, and the contour � is made up of three smooth geodesic curves in
S2, with each pair of smooth curves meeting at an angle of π/2 at one of the points
ωci . The geometry is depicted in Figure 4. The contour � is drawn in bold. (This
corresponds to the practically important case of the corner of a rectangular building.)

Throughout the computations we used collocation at the Gauss points of subin-
tervals. For the evaluation of the boundary integrals (4.21), we used Gauss quadrature
at the collocation points in the “far field,” i.e., when i, i′ satisfy (4.22). When (4.22)
does not hold we increase the number of quadrature points, d, logarithmically. More
precisely, we choose d to be the smallest integer satisfying

d ≥ (r + 1) log(n)

2 log(2)
.

This heuristic is motivated by an analysis in [13]. Note that for this geometry, when
ω,ω′ lie on the same edge of the geodesic triangle �, then LB(ω,ω′) = 0. Hence one-
third of the matrix entries are zero. Included in these zero entries are the integrals
that occur when the collocation point lies in the interval of integration. Note that
our procedure uses only one kernel evaluation for most matrix entries, as mentioned
in section 4. We shall see that our numerical results coincide with the theoretical
predictions of Theorem 4.5.

Our first set of results illustrate the accuracy of methods for solving the integral
equation (2.11) (equivalently (3.28)) arising from the boundary value problem (2.5),
(2.6). For these tests we set ω0 = −ωc1 and set the parameter ν = i.

The density û in (3.28) is not smooth near the corner. In fact, in the case of the
Dirichlet problem, we expect from Remark 4.4 that there exists a constant C ′ such
that û − C ′ ∈ L2,r

α , with α < 7/6. (This is because for the corners in this example
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Fig. 4. The contour � associated with a trihedral cone.

Table 1

Estimated errors for densities û using the piecewise constant collocation method for (3.28) on
a uniform mesh, q = 1.

Dirichlet problem Neumann problem

n err1n Ratio err1n Ratio
24 9.957E-2 1.609E-3
48 5.285E-2 1.88 1.530E-3 1.05
96 2.472E-2 2.14 1.229E-3 1.24
192 1.074E-2 2.30 1.077E-3 1.14
384 4.992E-3 2.15 9.589E-4 1.12

χ = 1/2, so θ = 2/3 and hence θ + 1/2 = 7/6.) When Neumann boundary conditions
are prescribed, we expect û ∈ L2,r

α , α < 1/6. So, for the Dirichlet problem, piecewise
constant approximation (r = 1) should (by Theorem 4.5) yield optimal convergence
(i.e., O(n−1) in the L2 norm) on a uniform mesh (q = 1 in (4.5)). On the other hand
for the Neumann problem we expect (by a generalization of Theorem 4.5) a rate of
convergence close to O(n−1/6) on a uniform mesh.

To illustrate convergence, for each case we have computed an “exact” solution û∗

by using piecewise linear collocation on a mesh with 498 nodes. (To obtain the “exact”
Dirichlet solution we grade the mesh towards the corners with q = 2, and for the
“exact” Neumann solution, since the grading required to obtain optimal convergence
is rather severe, we use here a grading exponent q = 3.) We computed the approximate
L2 error err1n := ‖û∗−ûn‖2 using midpoint quadrature with respect to the mesh with n
subintervals. The results are given in Table 1. As expected, a convergence rate of close
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Table 2

Estimated errors for densities û, using the piecewise constant collocation method for (3.28) on
a graded mesh, q = 3.

Dirichlet problem Neumann problem

n err1n Ratio err1n Ratio
24 1.257E-2 6.307E-3
48 4.948E-3 2.54 6.106E-3 1.03
96 2.147E-3 2.30 4.744E-3 1.29
192 7.842E-4 2.74 3.553E-3 1.34
384 2.442E-4 3.21 2.738E-3 1.30

to O(n−1) is observed for the Dirichlet problem and close to O(n−1/6) for the Neumann
problem. (In Tables 1–4, “ratio” is defined to be errin/err

i
n−1 for i = 1 or 2.) As we

have shown, mesh grading will improve suboptimal rates of convergence. Consider the
integral equation arising from the Neumann problem. Because its solution satisfies
û ∈ L2,r

α , with α < 1/6, it can be shown (by the methods of Theorem 4.5) that with
q′ ≤ 6r a rate of convergence of O(n−q′/6) in the L2 norm can be attained when
a graded mesh is used with grading exponent q > q′ for collocation onto piecewise
polynomials of order r. We illustrate the correctness of this result with q = 3. The
results are in Table 2. Here we find that the Neumann problem now converges with
rate close to O(n−1/2), as expected. The Dirichlet problem now appears to converge
with a superoptimal rate, but this could be expected to subside back to O(n−1)
asymptotically. These results indicate that our integral equation solver is working as
predicted by the theory.

Our next set of results illustrates the convergence of the approximate solutions
to the spherical boundary-value problem (2.5), (2.6). We consider the same problem
as above with ω0 = −ωc1 and ν = i. In Tables 3 and 4, we tabulate the errors in
approximate solutions to (2.5), (2.6) obtained by substituting un(ρ(s), ν) = ûn(s)
into (2.7) (in the Dirichlet case) and (2.9) (in the Neumann case) and computing
the resulting integrals by the Gauss quadrature rule based at the points used in
the computation of ûn. For illustration we have chosen to observe the solution at
the particular observation direction ω = (0, 0,−1). The error err2n is computed by
|grn(ω,ω0, ν)− g̃r(ω,ω0, ν)|, where g̃r is computed with a large n (= 330) and q = 3.

The results illustrate the superconvergence of the method (well documented in
the case of planar problems; see, e.g., [14, 3, 22]), with close to O(n−2) convergence
attained for q = 3. The extreme gradings needed for optimal convergence of the den-
sity may not be needed for the potential, and in fact better than optimal convergence
may be obtained because of the smoothness of the fundamental solution away from
the boundary �.

We emphasize that the results in Tables 1–4 illustrate not only the convergence
theory in section 4, but also show that the algorithm used to compute the Legendre
functions with complex index (by applying a Runge–Kutta method to Legendre’s dif-
ferential equation), which is described in detail in [13], is working in a stable manner.

The results given here involve approximation with piecewise constant basis func-
tions. Results for piecewise linears are given in [13]. An important point is that, since
only one kernel evaluation is needed for most matrix entries independent of the order
of the basis functions, the cost of implementation does not increase much as the order
of the basis functions is increased. This suggests that the h-p version of the boundary
element method should be very competitive for this application, and our next set of
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Table 3

Estimated errors for the potential (2.7) using the piecewise constant collocation method (Dirich-
let boundary conditions).

Uniform mesh, q = 1 Graded mesh, q = 2 Graded mesh, q = 3

n err2n Ratio err2n Ratio err2n Ratio
12 3.12E-4 3.16E-4 4.70E-4
24 1.36E-4 2.3 1.35E-4 2.4 1.62E-4 2.9
48 5.43E-5 2.5 4.21E-5 3.2 6.12E-5 2.7
96 2.13E-5 2.6 1.34E-5 3.2 2.02E-5 3.0
192 8.84E-6 2.4 4.09E-6 3.3 5.91E-6 3.4

Table 4

Estimated errors for the potential (2.9) using the piecewise constant collocation method (Neu-
mann boundary conditions).

Uniform mesh, q = 1 Graded mesh, q = 2 Graded mesh, q = 3

n err2n Ratio err2n Ratio err2n Ratio
12 6.25E-5 3.74E-5 4.45E-5
24 2.68E-5 2.3 1.02E-5 3.7 8.07E-6 5.5
48 1.11E-5 2.4 2.93E-6 3.5 3.08E-6 2.6
96 4.54E-6 2.5 7.72E-7 3.8 8.73E-7 3.5
192 1.82E-6 2.5 2.05E-7 3.8 2.35E-7 3.7

results concern this method.
For fixed σ ∈ (0, 1) we define a geometrically graded mesh on [−Λ,Λ] by

xm+i = σm−iΛ, −xm−i = σm−iΛ, i = 1, . . . ,m, xm = 0.(5.1)

Instead of seeking an approximate solution in the space Sr
n of piecewise polynomials

of fixed order r on each subinterval, we allow a variable order ri on each subinterval
Ii (see (4.1) and the remarks following). A typical distribution of orders would be

r = �(m + 1 − i)β� for i < m, r = �(i−m)β� for i > m + 1

for some fixed parameter β > 0, where, for x ∈ R, �x� denotes the smallest integer
which is strictly greater that x. On the intervals Ii, i = m,m + 1, the approximate
solution is set to zero. Thus, on intervals close to the corner we approximate the
solution on small subintervals, using low order methods, while further away we use
higher orders on larger subintervals. The maximum order increases linearly with m
and hence also with n. This is a standard prescription (e.g., [21]).

By making use of the fundamental results of Elschner [21] for the Laplace case,
and combining these with our results in section 3, it can be shown [13] that the h-p
method is stable. By making further assumptions about the regularity of the solution
to (3.28), it can be shown that the h-p method converges exponentially. In Figure 5 we
illustrate the convergence of the h-p method, compared with the piecewise constant
and piecewise linear cases for the potentials (2.7) arising from the Dirichlet problem
with ω0 = −ωc1 , ω = (0, 0,−1), and ν = i.

In these computations, the parameter values σ = 0.25 and β = 0.5 were employed
in the h-p method. For these results we naively used the r-point Gauss–Legendre rule
to calculate the matrix entries L̂i′j′,ij ; i.e., in this case all of the matrix entries were
computed using one kernel evaluation. Observe the exponential convergence of the
h-p method in Figure 5. (For another way to obtain exponential convergence for this
type of integral equation, see [29].)
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Fig. 5. Errors for the potential (2.7) for the h version and h-p version of collocation.

Finally, in order to illustrate the computations of the diffraction coefficients for
this geometry, we shall show graphically how the computed f(ω,ω0) in (1.4) varies
for three different incidence directions ω0, and many observation directions ω ranging
over a subdomain of M . In this illustration we restrict ourselves to the Dirichlet
problem, and we consider the incident directions given in spherical polar coordinates
(θ, φ) by

ω0 = (π, 0), (11π/12, 0), and (5π/6, 0),(5.2)

and a range of observation directions

ω = ((π − θ), φ), with 0 ≤ θ ≤ π/3, 0 ≤ φ ≤ 2π.(5.3)

In Figure 6 we illustrate how |f(ω,ω0)| varies as a function of θ and φ for each
of the three different incident angles. The quantity |f(ω,ω0)| is plotted on the x3

axis against the projection of ω onto the x1x2-plane given by ω = (π − θ, φ) �→
(θ cosφ, θ sinφ).

Observe in the first row of Figure 6 that when ω0 = (π, 0), i.e., the incident wave
propagates in an “axial” direction, then the magnitude of the diffraction coefficients is
smallest in the backscattering direction. This is in qualitative agreement with results
for the circular cone [4]. Also note when ω0 = (π, 0) that if we fix θ > 0, then the
distance between ω = (π − θ, φ) and the boundary of the nonsingular region, given
by θ1(ω,ω0) = π—see (2.1)—is smallest when φ = 0, 2π/3, 4π/3. At the singular
directions f is infinitely large; hence the three peaks appear in the first row of Figure 6.

As expected, the results are symmetric with respect to rotations by ±2π/3 about
the axis. As we vary the angle of incidence, the symmetry breaks and the position
of the singular directions will vary. In particular it can be shown from (2.1) that
for ω0 = (11π/12, 0) and (5π/6, 0) and fixed θ > 0, the distance between ω and the
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Fig. 6. Diffraction coefficients for a trihedral cone.

singular directions is smallest when φ = 0. This explains the faster growth, as θ
increases, of |f(ω,ω0)| along φ = 0 (i.e., along the line x2 = 0)—see the second and
third rows of Figure 6.

The numerical method used for these computations was the piecewise constant
collocation method with n = 48 subintervals on a uniform mesh (cf. Theorem 4.5).
To produce each picture in Figure 6 the density in the integral equation (3.28) was
approximated for 80 values of ν. Then using these densities we computed the solution
to the boundary-value problem (2.5), (2.6) for the same 80 values of ν at ∼ 800
observation points ω. Therefore ∼ 64,000 evaluations of the double layer potential
were required. The diffraction coefficient f was computed from formula (1.4) by
truncation to a finite domain of integration with respect to ν = iτ and then applying
the trapezoidal rule. The truncation points are chosen according to an analysis of
the asymptotics of the integrand in (1.4) for large |τ | and are designed to yield an
overall method which converges at the same rate as the method for computing gr (see
[13]). Clearly this is a very computationally intensive problem and the efficiency of
our algorithm is of prime importance.
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