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Boundary integral methods in high frequency scattering

Simon N. Chandler-Wilde ∗ Ivan G. Graham†

Abstract

In this article we review recent progress on the design, analysis and implementation

of numerical-asymptotic boundary integral methods for the computation of frequency-

domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle.

The main aim of the methods is to allow computation of scattering at arbitrarily high

frequency with finite computational resources.

1 Introduction

There is huge mathematical and engineering interest in acoustic and electromagnetic wave
scattering problems, driven by many applications such as modelling radar, sonar, acous-
tic noise barriers, atmospheric particle scattering, ultrasound and VLSI. For time harmonic
problems in infinite domains and media which are predominantly homogeneous, the boundary
element method is a very popular solver, used in a number of large commercial codes, see e.g.
[26]. In many practical applications the characteristic length scale L of the domain is large
compared to the wavelength λ. Then the small dimensionless wavelength λ/L induces oscilla-
tory solutions, and the application of conventional (piecewise polynomial) boundary elements
for this multiscale problem yields full matrices of dimension at least N = (L/λ)d−1 (in R

d).
(Domain finite elements lead to sparse matrices but require even larger N .) Since this “loss of
robustness” as L/λ → ∞ puts high frequency problems outside the reach of many standard
algorithms, much recent research has been devoted to finding more robust methods.

One approach is to seek faster implementations of standard methods. Fast multipole meth-
ods have allowed conventional BEM solutions for much larger N (e.g. [28, 29]), but it remains
impossible to compute with L/λ much beyond a few hundred in 3D. To allow larger L/λ, a
highly promising new direction is the development of “hybrid” algorithms, which incorporate
asymptotic information about the oscillation of the solution into the approximation space
[1, 2, 12, 38, 50, 22, 59, 6, 23, 30, 13, 32, 43]. Initial experiments using geometric-optics
type approximations on simple model problems indicate the possibility of delivering almost
uniform accuracy for N fixed as L/λ → ∞. This review will explain the key ideas behind
these methods and the mathematical tools which have been so-far developed for their analysis.
We also highlight some important open problems which are the focus of current research in
this very active area. Another approach to high frequency problems, involving the solution of
appropriate limiting problems, is dealt with elsewhere in this volume [57].
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Throughout this review we will focus on the specific physical situation of time harmonic
acoustic scattering (e−iωt time dependence for some ω > 0); indeed for most of the paper on
the case of a sound soft obstacle. This focus is made partly for brevity and simplicity (the
algorithms we discuss should generalise to other boundary conditions and to, e.g., elastic and
electromagnetic waves), but also because most development of algorithms and most analysis of
those algorithms has focused so far on this simplest case. Thus, we suppose an incident plane
wave uI(x) = exp(ikx · â), x ∈ R

d with direction given by the unit vector â and k denoting
wavenumber (k = 2π/λ = ω/c, where c is the wave speed), is scattered by a bounded object
Ω ⊂ R

d to produce a radiating scattered wave uS. The total wave u = uI + uS satisfies the
Helmholtz equation:

∆u+ k2u = 0 in D := R
d \ Ω (d = 2 or 3). (1.1)

Let Φ(x, y) denote the standard free-space fundamental solution of the Helmholtz equation,
given, in the 2D and 3D cases, by

Φ(x, y) :=





i
4
H

(1)
0 (k|x− y|), d = 2,

exp(ik|x− y|)

4π|x− y|
, d = 3,

(1.2)

for x, y ∈ R
d, x 6= y, where H

(1)
ν denotes the Hankel function of the first kind of order

zero. Then in the simplest Dirichlet case (u = 0 on the boundary Γ), starting from Green’s
representation theorem (see e.g. [23] for details in the general Lipschitz case) we obtain

u(x) = uI(x) −

∫

Γ

Φ(x, y)
∂u

∂n
(y) ds(y), x ∈ D , (1.3)

and the scattering problem can be reformulated as the boundary integral equation (see e.g.
[27])

∂u

∂n
(x) + 2

∫

Γ

(
∂Φ(x, y)

∂n(x)
− iηΦ(x, y)

)
∂u

∂n
(y) ds(y) = f(x), x ∈ Γ. (1.4)

Here ∂/∂n denotes the normal derivative (outward from Ω), η > 0 is a coupling parameter
(which ensures that (1.4) is well-posed),

f(x) := 2
∂uI

∂n
(x) − 2iηuI(x), x ∈ Γ,

and ∂u/∂n is to be determined. Standard boundary element methods approximate the whole
(oscillatory) ∂u/∂n by (piecewise) polynomials. By contrast the hybrid methods which we shall
discuss in the following section employ asymptotic analysis to obtain analytic information
about the oscillations in ∂u/∂n. This information is then exploited directly in the numerical
method: only slowly-varying components are approximated and this yields a method which
is more “robust” as the frequency increases.

Throughout the review we shall make use of the single-layer, double-layer, adjoint double-
layer and hypersingular operators S, D, D′ and H, defined respectively by:

Sψ = 2

∫

Γ

Φ(x, y)ψ(y)ds(y) , Dψ = 2

∫

Γ

∂Φ(x, y)

∂n(y)
ψ(y)ds(y)

D′ψ = 2

∫

Γ

∂Φ(x, y)

∂n(x)
ψ(y)ds(y) , Hψ = 2

∫

Γ

∂2Φ(x, y)

∂n(x)∂n(y)
ψ(y)ds(y) .
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The particular equation (1.4) can then be written as

A′v := (I +D′ − iηS)v = f , where v = ∂u/∂n . (1.5)

This integral equation formulation is well known and is attributed to Burton and Miller
in [27]. There one can find a proof that (1.4) is uniquely solvable in C(Γ) in the case when Γ
is sufficiently smooth (a proof of well-posedness in L2(Γ), indeed in the Sobolev space Hs(Γ)
for −1 ≤ s ≤ 0, for the case of general Lipschitz Γ is given recently in [23]). It is a direct
integral equation formulation, meaning that it arises directly from applying Green’s theorems
to the solution of the scattering problem, so that the unknown in the integral equation is the
unknown part of the Cauchy data of problem (1.1) on the boundary. A closely-related indirect
formulation, due to Brakhage & Werner [11], Leis [53], and Panič [58], obtained by seeking
the solution as a linear combination of single- and double-layer potentials with some unknown
density φ, can be written in operator form as

Aφ = (I +D − iηS)φ = −2uI |Γ. (1.6)

Note that equations (1.6) and (1.5) are intimately related; indeed A′ is the formal adjoint of
A, as a consequence of which, as operators on L2(Γ), A and A′ have the same spectrum, norm
and condition number (see [20]). We shall focus more on (1.5) in this review. As noted by
Bruno et al. [12], this equation seems better behaved in the high frequency regime, since its
solution is the normal derivative on Γ of the solution of the original scattering problem, while
it can be shown that the solution φ of (1.6) is the difference between solutions to interior and
exterior boundary value problems. For this reason the solution of (1.5) is less oscillatory and
its high frequency behaviour is better understood, especially for convex scatterers.

An important issue for (1.6) and (1.5), which we will address in §3, is how to choose the
coupling parameter η > 0 optimally, e.g. to minimise the condition number of A′. Discussion
of this issue goes back to Kress and Spassow [49] (and see [48, 3, 4, 37, 17, 30, 9, 24, 20]). We
will see in §3 that a correct k-dependent choice is essential in the high frequency limit.

Equation (1.5) is a second-kind integral equation which determines the unknown solution
v := ∂u

∂n
, and there is a huge literature on equations of this form. When the boundary Γ is

sufficiently smooth (C1 is sufficient [33]) the integral operators D′ and S in (1.5) are compact
on standard function spaces, so that A′ is a compact perturbation of the identity operator.
Using classical arguments based on this property, one can show that standard numerical
techniques like Galerkin and collocation methods using piecewise polynomial basis functions
lead to uniquely determined numerical solutions vN satisfying quasi-optimal error estimates
of the form

‖v − vN‖ ≤ C inf
φN∈SN

‖v − φN‖, (1.7)

where SN denotes the finite-dimensional approximation space being used (and N is the dis-
cretisation parameter, e.g. the dimension of the space SN). More precisely, for properly-
designed Galerkin method and collocation methods, these classical arguments (e.g. Atkinson
[7]) tell us that there exists a C > 0 and N0 > 0 such that (1.7) holds for all N ≥ N0 (see
§3.1 for a little more detail).

Based on (1.7) one can think of the numerical analysis of robust methods for scattering
problems as requiring research on three related questions:

Q1 The design of good, k-dependent, finite-dimensional approximation spaces SN , so that
the best approximation error infφN∈SN

‖v − φN‖ is growing as slowly as possible as
k → ∞. These spaces will normally depend on k and so we denote them SN,k.
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Q2 The proof of sharp estimates for the dependence of the “stability constant” C in (1.7) on
k, hopefully showing that these again indicate boundedness or mild growth as k → ∞.

Q3 The design of good methods of implementing the numerical methods using the optimal
approximation spaces in item 1; ideally show that these are realisable in a computation
time which remains bounded as k → ∞.

For Q1, an “ideal” aim might be that when v is the solution of (1.4), the best approxima-
tion error should remain constant for each fixed N as k → ∞. Recent results on the analysis
of this problem are given in §2.

For Q2, the classical error analysis results for second-kind integral equations tell us that
(1.13) holds for all sufficiently largeN (N ≥ N0). However, because the wavenumber k appears
non-linearly inside the kernel of the operator A′ in (1.5), they give us no clear quantitative
information on either: (i) how, for fixed N , the constant C depends on the parameter k; or
(ii) how, for fixed C, the threshold N0 depends on k. An alternative method of analysis starts
from the following variational formulation of (1.5):

Seek v ∈ L2(Γ) such that a(v, w) = (f, w)L2(Γ) , (1.8)

where a(v, w) = (A′v, w)L2(Γ) . Then the standard abstract theory of variational methods
shows, for example, that, provided a satisfies, for all v, w ∈ L2(Γ), the two conditions

|a(v, w)| ≤ B‖v‖L2(Γ) ‖w‖L2(Γ) (continuity) ,
|a(v, v)| ≥ α‖v‖2

L2(Γ) (coercivity)

}
(1.9)

for some positive constants B and α, then the equation (1.8) is uniquely solvable. Moreover if
the Galerkin (variational) method of approximation is applied to (1.8) in any finite dimensional
subspace SN,k ⊂ L2(Γ), i.e. seek vN ∈ SN,k such that

a(vN , wN) = (f, wN)L2(Γ) , for all wN ∈ SN,k , (1.10)

then we have the error estimate (1.7) with C = B/α. Therefore one potential way to answer
Q2 is to show that a is coercive and to estimate the dependence of B and α on k. Results on
this and related problems are discussed in §3.

Finally, with regard to Q3, in §4 we discuss recent work on the key implementation issue
of computation of the oscillatory integrals which arise in the assembly of stiffness matrices
arising from hybrid methods. We also discuss briefly linear algebra issues relating to the fast
solution of the dense linear systems arising from hybrid methods.

Before continuing, we would like to explore, a little more carefully, reasonable ways of
measuring the accuracy of vN . Since v itself depends on k, rather than controlling the absolute
error in some norm (as in (1.7)), it would seem more sensible to control relative error measures
such as

‖v − vN‖L2(Γ)

‖v‖L2(Γ)

or
‖v − vN‖L2(Γ)

‖vI‖L2(Γ)

,

where vI = ∂uI/∂n. The attraction of the second of these is that the behaviour of ‖vI‖L2(Γ)

is clear, in particular it grows proportional to k as k → ∞ for an arbitrary obstacle. For
smooth convex obstacles, for which we know (via the Kirchhoff approximation) that v ≈ 0
on the shadow side, v ≈ 2vI on the lit side, it is clear that ‖v‖L2(Γ) grows in proportion to
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‖vI‖L2(Γ), and so in proportion to k. Thus, for the second measure of error, and also for the
first in the convex case, controlling the above measures of error, for a fixed obstacle, amounts
to controlling

k−1‖v − vN‖L2(Γ). (1.11)

A reasonable alternative is to take the view that the computation of v = ∂u/∂n is an
intermediate step, and that the real goal is to compute u accurately in the domain D, by
substituting the approximation vN to ∂u/∂n into equation (1.3). Denoting by uN the resulting
approximation to u, we see that

u(x) − uN(x) =

∫

Γ

Φ(x, y)(vN(y) − v(y)) ds(y), x ∈ D. (1.12)

In this context we may seek to control

‖u− uN‖Lp(G)

‖u‖Lp(G)

or
‖u− uN‖Lp(G)

‖uI‖Lp(G)

, (1.13)

where ‖·‖Lp(G), for 1 ≤ p ≤ ∞, is the standard Lp norm on some region G ⊂ D (e.g. one might
choose p = 2 or ∞, and, in the latter case, choose G = D (as in (2.28) below)). Applying the
Cauchy-Schwarz inequality to (1.12), we obtain the upper bound:

|u(x) − uN(x)| ≤ c(x)‖v − vN‖L2(Γ), c(x) :=

{∫

Γ

|Φ(x, y)|2 ds(y)

}1/2

. (1.14)

Thus small relative error in u can be achieved by controlling ‖v−vN‖L2(Γ). However, the value
of ‖uI‖Lp(G) is independent of k, and, in the 3D case, (c(x))2 = (4π)−2

∫
Γ
|x − y|−2 ds(y) has

a value independent of k, while, in 2D, (c(x))2 ∼ (π/(8k))
∫
Γ
|x− y|−2 ds(y) as k → ∞. Thus

to achieve small values for the measures of relative error (1.13) by controlling ‖v − vN‖L2(Γ)

one needs to ensure that
k−(3−d)/2‖v − vN‖L2(Γ) (1.15)

is small. Of course, in the high frequency limit, especially in 3D (d = 3), this is a significantly
stronger requirement than (1.11). We remark that the scaling by k−(3−d)/2 in (1.15) is rather
natural in that it makes the expression (1.15) dimensionless.

2 Hybrid Approximation Spaces

Instead of approximating v := ∂u/∂n in (1.4) directly by piecewise polynomials, the hybrid
numerical-asymptotic methods which we are interested in here use approximations with the
general form (where we highlight the dependence on k in the notation):

v(x, k) ≈
M∑

m=1

k exp(ikγm(x))Vm(x, k), x ∈ Γ , (2.1)

with the phase functions γm(x) chosen a priori and only the unknowns Vm(x, k) approximated
by piecewise polynomials. The key point is that asymptotic analysis can be used to determine
the γm in such a way that the Vm are very much less oscillatory than the original ∂u/∂n.
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Some of the pioneering work in the development of hybrid boundary element methods for
scattering problems was carried out by Abboud et. al. [1, 2], who considered the problem
(1.1), subject to the impedance boundary condition : ∂u

∂n
+ ikZu = 0 on Γ, and formulated

this as the boundary integral equation

−Hv + k2ZS(Zv) − ikD′(Zv) − ikZDv = gk : = −2
∂uI

∂n
− 2ikZuI ,

where v = u|Γ, the restriction of u to Γ. The Galerkin discretisation of this integral equation
yields a symmetric stiffness matrix and has no spurious frequencies provided ℜZ > 0. The
authors argued (partly referring to earlier results [40]) that, due to the oscillatory solution
of (1.1), in general the conventional boundary element approximation vh of this equation,
using step-size h and polynomial degree p, would satisfy an error estimate ‖v − vh‖L2(Γ) ≤
C(k)(hk)p+1. Ignoring the unknown factor C(k) this shows that in order to preserve accuracy
as k → ∞, we would require h ∼ k−1 and so, for integral equations on surfaces in R

d, the
number of degrees of freedom N would have to grow at least with O(kd−1). To remedy this,
[1, 2] suggested taking M = 1 and γ1(x) = x · â in (2.1), yielding

v(x, k) = k exp(ikx · â) V (x, k) , (2.2)

and then approximating the unknown “slow variable” V (·, k) using conventional finite element
methods. This may be thought of as a numerical implementation of the “Geometric Optics”
or “Kirchhoff” approximation which assumes the phase of the scattered wave uS in (1.1) to
be the same as the phase of the incoming wave uI . (The scaling factor k in (2.2) arises from
the differentiation appearing in v = ∂u/∂n.) The function V (x, k) is known to be completely
non-oscillatory only in certain regimes (for example when Γ is smooth and convex and x is
in the illuminated zone and is bounded away from the “shadow boundary” which divides
illuminated parts of Γ from the parts which are in “shadow”). However for general smooth
convex Γ, V (x, k) can be expected to be less oscillatory than v(x, k) and it was argued in [1, 2]
that ‖V (·, k)‖Hn+1(Γ) ≤ Ck(n+1)/3. (More details of how this estimate can be made rigorous
are in §2.1). The formal argument sketched above then suggests that using a finite element
space of dimension N = O(k(d−1)/3) to approximate V in a numerical method based on (2.2)
should preserve accuracy as k → ∞. This, while not being fully “robust” as k → ∞, is a
considerable improvement on the estimate for conventional methods sketched in §1 although
we emphsise that this is not fully rigorous since it ignores the unknown behaviour of C(k).

In more recent work [12, 13], Bruno et. al. tackled the breakdown of the geometric optics
ansatz by employing a more careful discretisation scheme. Focussing on the formulation (1.4),
using also the ansatz (2.2), and multiplying each side of the result by exp(−ikx·â), one obtains

V + D̃′V − iηS̃V = 2i(kâ · n̂− η) . (2.3)

The integral operators D̃′ and S̃ are analogues ofD′ and S with the additional factor exp(ik(y−
x) · â) in their kernels, leading to kernel functions with easily identified phase. For example,

S̃V (x) = 2

∫

Γ

Φ(x, y) exp(ik(y − x) · â)V (y)dy

=

∫

Γ

exp(ik(|x− y| + (y − x) · â))Mk(x, y)V (y)dy , (2.4)
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where the factor Mk is weakly singular at y = x but is not oscillatory for large k.
The approach taken in [12, 13] is now to apply a Nyström method to (2.3) based on a

suitable quadrature rule for oscillatory integrals of the form (2.4). This involves the approx-
imation of V on a coarse k−independent grid. Since (as we shall see more precisely in the
following section), the geometric optics approximation breaks down in a boundary layer of
width O(k−1/3) around the shadow boundary, the mesh is graded in O(k−1/3) neighbourhoods
of the shadow boundaries. Based on sampling V at points in this coarse mesh, integration for
operators such as (2.4) are employed based on partitions of unity and (exponentially conver-
gent) trapezoidal rules. The partition of unity is designed to localise around special points
(with respect to the observation point x) namely (i) the singular point y = x; (ii) the sta-
tionary points where the gradient of the phase of (2.4) vanishes; (iii) shadow boundary points
n(x) · â = 0. As k → ∞ integration regions become more localised around these points. This
is a high-frequency variant of the matrix-free Nyström method of [15]. Since this method is
not based on a Galerkin formulation, the analysis of its k-robustness is a challenging open
problem. We shall return to methods for oscillatory integrals arising in scattering problems
in §4.

A very interesting extension of the method in [12, 13] to non-convex scattering is given in
[14]. There it is explained how the integral equation (1.4) may be solved by a Neumann series
approach, where each term in the Neumann series corresponds to the scattering by a single
obstacle of an incident field consisting of the incident wave combined with previously scattered
waves. Each of these single-obstacle scattering problems can be solved by a method similar
to the methods described above, except that now the ansatz (2.1) becomes somewhat more
complicated: the phase x · â appearing in (2.2) has to be replaced by a function reflecting the
optical distance travelled by rays through all the previous reflections. Preliminary numerical
tests were provided in [14] which demonstrated the potential for the method. The theory of this
method was substantially advanced in the subsequent work [31, 32]. There the implementation
of the Neumann series was shown to correspond to a sum over increasing period of a sequence
of periodic orbits. Each orbit corresponds to reflections off a fixed set of scatterers, and
this allows the convergence rate of the Neumann series to be estimated, for sufficiently high
frequency and permits the formulation of methods for accelerating its convergence. The most
recent work in this direction [5] extended the analysis to the three dimensional case, where
additional considerations on the relative orientation of the scattering bodies come into play.

In [31, 32, 5] the emphasis is on the convergence of the Neumann series, and assumes
the robust solution of the integral equations arising at each iteration. Thus the proof of the
k−robustness of the overall algorithm remains a challenging open problem.

One of the substantial challenges which will arise in the rigorous numerical analysis of
non-convex scattering problems is that the k− dependence of the constant C in (1.7) is likely
to be considerably more complicated than it is in the convex case. We make this statement
because C contains in some sense a bound on the inverse operator A−1, where A appears in
(1.5) (see §3.1). While this inverse is uniformly bounded with respect to k in the convex case
(see §3.2), this is not true in the non-convex case. An explicit counter-example is given in [20].
Finally, it is important to point out that, while there has been some progress on aspects of
algorithms for the 3D problem (e.g. [14, 36]), the theoretical numerical analysis for this case
is limited to date. Moreover the underlying asymptotic theory is much more challenging (e.g.
[10] gives a numerical approach to a 3D “canonical problem” and contains extensive references
to the asymptotic theory).
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In the next two subsections we describe recent work on 2D problems where more precise
rigorous estimates are available, namely scattering by smooth convex obstacles and by convex
polygons. We note that, in very recent work [51], numerical experiments have been carried
out which suggest that the algorithms for these two cases can be successfully combined to
compute high frequency scattering by curvilinear convex polygons.

2.1 The case of smooth Γ in 2D

In this subsection we assume that Γ is a C∞ convex contour. Under plane wave illumination
Γ is naturally divided by the two tangency points T1 and T2 into an “illuminated zone” (I)
and a “shadow zone” (S), as depicted in Figure 1. Letting γ : [0, 2π] → Γ be a 2π-periodic
parametrization of Γ we define ti ∈ [0, 2π) to be the preimages of the Ti: γ(ti) = Ti, for
i = 1, 2. The “Geometric Optics” ansatz (2.2) may then be written (writing v(γ(s), k) as
v(s, k) for convenience)

v(s, k) = k exp(ikγ(s) · â) V (s, k). (2.5)

In [30], the parameter space [0, 2π) is covered by four intervals Λi, i = 1, . . . , 4, with Λ1

and Λ2 being suitably small neighbourhoods of the tangency points t1 and t2, and Λ3 and Λ4

contained in the illuminated and shadow zones respectively. Letting χi denote a corresponding
partition of unity, the p−version of the Galerkin method is then applied to (1.8), i.e. we use
in (1.10) the approximating space of dimension N ,

SN,k := span {k exp(ikγ(s) · â) χj(s)P (s) : P ∈ Ppj
, j = 1, 2, 3} , (2.6)

where Pp denotes the algebraic polynomials of degree p. That is, we use possibly different
degree polynomial approximations to V in each of the illuminated and transition zones, and
zero approximation to V in the shadow zone.

uI(x) = exp(ikx · â)

I

T1

T2

S

Figure 1: Physical domain: I denotes the illuminated zone, S the shadow zone and T1, T2 the
tangency points.

Considering the numerical analysis of this method we recall the two key questions Q1
and Q2 highlighted in §1. To answer Q1 we need estimates for the dervatives of V (s, k)
with respect to s which are explicit in k in the illuminated and shadow zones. Moreover we
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need estimates for the exponential decay of V in the deep shadow zone Λ1. This requires
a substantial study of the theory of the “geometric optics” approximation (2.2). In [30] the
following result is presented.

Theorem 2.1. For all L,M ∈ N ∪ {0}, the function V (s, k) admits a decomposition of the
form:

V (s, k) =

[ L,M∑

ℓ,m=0

k−1/3−2ℓ/3−mbℓ,m(s)Ψ(ℓ)(k1/3Z(s))

]
+RL,M(s, k) , (2.7)

for s ∈ [0, 2π], where the remainder term has its nth derivative bounded, for n ∈ N ∪ {0}, by

|Dn
sRL,M(s, k)| ≤ CL,M,n(1 + k)µ+n/3 , (2.8)

where µ := −min
{

2
3
(L+ 1), (M + 1)

}
and CL.M,n is independent of k. The functions bℓ,m

and Z are C∞ 2π-periodic functions. Z has simple zeros at t1 and t2, is positive-valued on
[t1, t2] and negative-valued elsewhere on [0, 2π]. Moreover Ψ : C → C is an entire function
which may be spcified explicitly by a certain contour integral involving the Airy function (often
called “Fock’s integral” - see [35, §7, 12], a book originally published in the Russian literature
in the late 1940’s).

Theorem 2.1 is derived in [30] using the often cited paper [55], combined with the technique
of matched asymptotic expansions and also referring to results from the classical literature
such as [18, 56, 25, 19, 69, 8].

The asymptotics of Ψ(τ) for large |τ | are of key importance for the behaviour of V . Since
Z is positive in Λ3 (inside the illuminated zone), the behaviour of V (s, k) for s ∈ Λ3 and for
large k is determined by the asymptotics of Ψ(τ) and its derivatives as τ → ∞. Similarly,
the behaviour of V (s, k) for s ∈ Λ1 (the deep shadow), depends on the asymptotics of Ψ(τ)
for τ → −∞. More complicated behaviour arises in the transition zones Λ1,Λ2. The required
properties of Ψ are known. In particular, (see [55, Lemma 9.9]):

Ψ(τ) = a0τ + a1τ
−2 + a2τ

−5 + . . .+ anτ
1−3n + O(τ 1−3(n+1)) , as τ → ∞ , (2.9)

where a0 6= 0 and this expansion remains valid for all derivatives of Ψ by formally differenti-
ating each term on the right hand side, including the error term. Moreover, there exists β > 0
and c0 6= 0 such that, for any n ∈ N ∪ {0}, as τ → −∞ ,

Dn
τ Ψ(τ) = c0 D

n
τ {exp(−iτ 3/3 − iτα1)} (1 + O(exp(−|τ |β))) , (2.10)

where α1 = exp(−2πi/3)ν1 and ν1 < 0 is the right-most root of the (all real and negative)
roots of the Airy function Ai. Hence, when τ → −∞ the function Ψ, as well as its derivatives
decrease exponentially but in a very oscillating way. The asymptotics in (2.10) may be deduced
by applying the theory of residues to the contour integral defining Ψ - see [8, p.393], [18,
Lemma 8]. More details are in [30]. Combining these asymptotics with Theorem 2.1, the
following estimates for the derivatives of V are proved in [30].

Theorem 2.2. For all n ∈ N ∪ {0} there exist constants Cn > 0 independent of k and
s ∈ [0, 2π], such that for all k sufficiently large,

|Dn
s V (s, k)| ≤ Cn

{
1, n = 0, 1,

k−1(k−1/3 + |ω(s)|)−n−2, n ≥ 2,
(2.11)

where ω(s) := (s− t1)(t2 − s). These estimates are uniform in s ∈ [0, 2π].
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This statement follows from [30, Theorem 5.4] but is in a somewhat simpler form than
given there. The essential point which follows from this is that for s in the illuminated zone
and bounded away from t1, t2 (and hence |ω(s)| is bounded away from zero), all derivatives of
V are bounded as k → ∞. This shows the correctness of the Geometric Optics approximation
in the interior of the illuminated zone. However, in a region of width O(k−1/3) around t1 or t2,
|ω(s)| . k−1/3 and Dn

sV (s, k) may blow up with O(k(n−1)/3). (Notations like . indicate that
there is a hidden constant independent of k). This corresponds to the estimates employed in
the analysis in [1, 2] and the motivation for the mesh grading scheme used in [12] which we
have described above.

In [30] we considered, for sufficiently large k > 0 and parameters ε, δ ∈ (0, 1/3], and c1 > 0,
c2 > 0 (to be chosen), the transition zones:

Λ1 := [t1 − c2k
−1/3+δ, t1 + c1k

−1/3+ε],

Λ2 := [t2 − c1k
−1/3+ε, t2 + c2k

−1/3+δ] ,

and the illuminated and shadow zones, respectively:

Λ3 := [t1 + c1k
−1/3+ε,, t2 − c1k

−1/3+ε] ,

Λ4 := [t2 − 2π + c2k
−1/3+δ,, t1 − c2k

−1/3+δ] .

The regions Λj touch only at their endpoints.
In each of the zones Λ1,Λ2 and Λ3 the error in best approximation by polynomials can

be estimated by standard methods. Using Theorem 2.2 and standard error estimates for
polynomial approximation it turns out that there are two conflicting choices for ε. The best
estimate in the illuminated zone is obtained with ε = 1/3 (i.e. the boundary of Λ1 does
not approach t1 or t2 as k → ∞) and the best error in the transition zones is obtained with
ε = 0 (these zones shrink as fast as possible with k). To balance the error the best choice
turns out to be ε = 1/9. These estimates have to be combined with the following theorem on
exponential decay in the deep shadow which is stated in [30].

Theorem 2.3. There exist positive constants c0, c
′
0 such that for all k sufficiently large,

‖v‖L2(Λ4) ≤ c′0 exp(−c0k
δ) . (2.12)

This result can be formally inferred by using the asymptotics (2.10) in the first term
of the right-hand side of (2.7), but this is not a rigorous proof since the remainder term
in (2.7) enjoys only algebraically decaying estimates. A brief account of how the proof of
Theorem 2.3 follows from the results in the literature is given in [30]. In particular we refer to
[63, 34, 67, 68, 52, 42, 60] for the highly non-trivial proofs. An interesting side remark is that
the results on exponential decay (in two-dimensional problems) in [67, 68] do not require the
contour to be analytic but only sufficiently smooth. There are also extensions to arbitrary
dimension, but these require analytic scattering surfaces and (as stated) are only valid in the
“deep shadow” (i.e. a bounded distance away from the shadow boundary) – see, e.g. [60,
Thm 3] which uses the ideas of [52].

Combining the estimate from Theorem 2.3 with the estimates for polynomial approxima-
tion in the illuminated and transition zones, we obtain (in the special case pj = p for each
j = 1, 2, 3 - see [30] for more general cases), that the Galerkin method solution, defined by
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(1.10), satisfies the error estimate

‖v − vN‖ ≤

(
B

α

)
inf

φN∈SN,k

‖v(·, k) − φN‖L2(Γ) (2.13)

≤ Cn

(
B

α

)
k

{
k−4/9

(
k1/9

p

)n

+ exp(−c0k
δ)

}
. (2.14)

Here (2.13) follows from (1.7) and that, as observed after (1.10), C ≤ B/α, where B and
α are the continuity and coercivity constants from (1.9). Moreover (2.14) follows from the
estimates for polynomial approximation and exponential decay described above and holds for
all 6 ≤ n ≤ p+1 (so in particular, for fixed k and C∞ data we have superalgebraic convergence,
as is normal in the p− version of the boundary element method.)

To make the estimate (2.14) of rigorous use we have to estimate the constant B from
above and α from below with respect to k. In [30] it is shown that for sufficiently smooth
contours Γ, and in the case η = k, we have B . k1/2. Substantial generalisations of this in
[20] are discussed in §3. Estimates for α from below are much harder. In [30] it was proved
by Fourier analysis (on circular or spherical boundaries) that α & 1 (i.e. k−independent
coercivity), again for η = k. However the extension of this result to general Γ is a challenging
open problem. Neverthess there is hope for success, since in [24] it was proved that ‖A−1‖ . 1
for Lipschitz star-shaped Γ and any η ∈ R\{0} (where A is the integral operator in (1.5)) and
this estimate is a necessary (although not sufficient) condition for k-independent coercivity of
a defined in (1.8).

On the assumption that k−independent coercivity holds for a the result (2.14) shows that
the error in the Galerkin approximation is of the order of a low power of k times (k1/9/p)n (for
6 ≤ n ≤ p + 1), plus a term which is exponentially small in k. Roughly speaking this shows
that by choosing p to grow slightly faster than k1/9 we preserve the accuracy of the method
as k increases. Numerical results in [30] support this result.

Before leaving this discussion we mention that using the asymptotics (2.10) when s is near
to but less than t1 (i.e. in the shadow region but near the transition point), then the first
term in (2.7) has the asymptotics (as k → ∞) :

k−1/3b0,0 exp(ik|Z(s)|3/3) exp(iℜ(α1)k
1/3|Z(s)|) exp(−ℑ(α1)k

1/3|Z(s)|) . (2.15)

Since α1 is in the first quadrant of the complex plane (see (2.10)), (2.15) contains two oscilla-
tory factors, one oscillating with scale k and one with scale k1/3, damped by the exponentially
decaying third term. These two scales were modelled in the basis functions used in the collo-
cation method of Giladi and Keller, which took into account the existence of “creeping waves”
behind the shadow boundary [38].

We now turn our attention to scattering by convex polygonal bodies.

2.2 The case of polygonal Γ

In separate work [6, 23], scattering by convex polygons, and more recently by curvilinear
convex polygons [51], has been considered. For the case of a polygon an appropriate specific
form of (2.1) is shown in [23] to be

v(x, k) ≈ k exp(ikx · â)V (x, k)

+ k
∑M

m=1[exp(ikx · âm)V +
m (x, k) + exp(−ikx · âm)V −

m (x, k)],
(2.16)
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Γ4

Ω4P5
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n̂6
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Figure 2: Our notation for the polygon. The M corners are numbered anti-clockwise, and we
denote the first corner by both P1 and PM+1. Ωm is the exterior corner angle at Pm.

for x ∈ Γ, where M is the number of sides of the polygon, the unit vector âm is parallel to
the mth side (directed from corner Pm to corner Pm+1 in Figure 2), and the function V ±

m is
assumed non-zero only on side m. (Physically the terms in the summation are included to
represent the parts of the field arising from diffraction at the corners.) In fact, it is shown in
[23] that for a polygon it is adequate to take V (x, k) to be constant on each side, precisely to
define V (x, k) so that the first term in the above expression is the high frequency Kirchhoff
or physical optics approximation, i.e.

∂u

∂n
(x) ≈

{
2∂uI

∂n
(x) on illuminated sides,

0, on sides in shadow.

This means to set, for x ∈ Γm,

V (x, k) :=

{
2in̂m · â, if n̂m · â < 0,

0, otherwise,
(2.17)

where n̂m is the outward unit normal on side m. Then, if V ±
m are approximated by piece-

wise polynomials on carefully chosen graded meshes, uniformly accurate approximations are
obtained as k → ∞, provided the number of degrees of freedom grows like O(log3/2 k). The
results [6, 23] are inspired by earlier results [22, 50] (indeed the method and analysis for
the convex polygon case are outlined in [22]). In these papers, as a prototype of develop-
ing and analysing boundary element methods for high frequency scattering, high frequency
algorithms are proposed for the problem of 2D scattering by a flat surface with piecewise
continuous impedance boundary condition, and a complete proof of k-independent accuracy
and complexity is provided, the first such result for any scattering algorithm.

We give now a little more detail of the methods and results of [23]. A key component
in the design of the ansatz (2.16) and the design of the graded meshes to approximate the
functions V ±

m (x, k) (both of which are essential to the overall low complexity) is understanding
the high frequency behaviour of the solution. We have seen in §2.1 that obtaining rigorous
results on high frequency asymptotics is, in general, a complex business. But this case of
a convex polygon is one in which rigorous high frequency asymptotics, at least a sufficient
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understanding of these for the purpose of designing an effective numerical scheme, can be
achieved by elementary arguments.

uI

Pm

Pm+1

Dm

Γm

Γ+
m

Γ−
m

Figure 3: Extension of Γm, for derivation of regularity estimates.

The trick (adapted from [22]) is to observe that one can write down an explicit solution
to the Dirichlet boundary value problem for the Helmholtz equation in a half-plane, since
we (trivially) know by the method of images the Green’s function for a half-plane. This
observation leads to the following useful representation for the solution to the scattering
problem. Let Dm ⊂ D denote the half-plane whose boundary contains Γm, the mth side of
the polygon (see Figure 3), and let Gm(x, y) be the Dirichlet Green’s function for the half-
plane Dm, i.e. Gm(x, y) = Φ(x, y)−Φ(x, y′m), where y′m denotes the image of y in the straight
line ∂Dm. Then

u(x) = ǫm(uI(x) + uR(x)) +

∫

∂Dm

∂Gm(x, y)

∂n(y)
u(y) ds(y) , for x ∈ Dm .

Here, ǫm = 0 if side Γm is in shadow, ǫm = 1 if it is illuminated, and uR is the plane wave
that would be reflected if uI were incident on the straight line ∂Dm, on which a Dirichlet
boundary condition holds (so uR(x) = Rm exp(ikx · âR

m), where âR
m = â · âm âm − â · n̂m n̂m

and the constant Rm is chosen so that uI(x) + uR(x) = 0 on Γm; see [23] for details). It is an

easy calculation that ∂Gm(x,y)
∂n(y)

= 2∂Φ(x,y)
∂n(y)

, and we recall that u = 0 on Γ. Thus, and taking the
normal derivative in the above equation, we see that

∂u

∂n
(x) = 2ǫm

∂uI

∂n
(x) + 2

∫

∂Dm\Γm

∂2Φ(x, y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γm. (2.18)

It is this equation which justifies the ansatz (2.16), with the explicit formula (2.17) for
V (x, k). The first term in the above equation is the Kirchhoff or physical optics approximation
and the integral is thus the correction to this approximation on the side Γm. To understand
the behaviour of this correction we write ∂Dm \ Γm as the union of the two disjoint half-lines
Γ+

m and Γ−
m (see Figure 3). Then we note that, explicitly, for x ∈ Γm and y ∈ Γ±

m,

∂2Φ(x,y)
∂n(x)∂n(y)

=
ikH

(1)
1 (k|x−y|)

4|x−y|

= ik2

4
exp(±ikx · âm) exp(∓iky · âm)µ(k|x− y|),

(2.19)
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where µ(z) := e−izH
(1)
1 (z)/z, for z > 0. Thus, we see that, for x ∈ Γm,

v(x, k) = k exp(ikx · â)V (x, k)
+ k[exp(ikx · âm)V +

m (x, k) + exp(−ikx · âm)V −
m (x, k)],

(2.20)

with V (x, k) given by (2.17) and

V ±
m (x, k) :=

ik

2

∫

Γ±
m

exp(∓iky · âm)µ(k|x− y|)u(y) ds(y). (2.21)

The point here is that, while we cannot evaluate the integrals V ±
m (x, k), because these integrals

involve the unknown u on Γ±
m, we can show, in a precise quantitative way, that these functions

are not oscillatory on Γm. This is the case since µ(k|x−y|) is very smooth, except when k|x−y|
is small, as the function µ(z), while singular at z = 0, is increasingly slowly varying as z → ∞,
as quantified in the following lemma from [23].

Lemma 2.4. For every ǫ > 0,

|µ(m)(z)| ≤ (1 + ǫ−1/2) (m+ 1)! z−3/2−m,

for z ≥ ǫ and m = 0, 1, . . ..

Applying this lemma leads to bounds on the tangential derivatives on Γm of V ±
m (x, k). In

this theorem and subsequently it is is convenient to use the abbreviation

uM := sup
x∈D

|u(x)|,

to let Lm denote the length of Γm, and to let ∂/∂s denote the derivative in the tangential
direction on Γ.

Theorem 2.5. [23, Theorem 3.2] For x ∈ Γ+, let s denote the distance of x from the corner
Pm. Then, for n = 0, 1, ..., it holds that

∣∣∣∣
∂n

∂sn
V +

m (x, k)

∣∣∣∣ ≤ 2(1 + ǫ−1/2) uM n! k−1/2s−1/2−n, for ǫ ≤ ks ≤ kLm.

The same bound applies to the tangential derivatives of V −
m (x, k) but with s denoting distance

along Γm from the corner Pm+1.

This bound captures the behaviour of V +
m (x, k) on Γm except near the corner Pm. But

this can be understood by standard elliptic regularity estimates for behaviour of solutions
near corners of the domain (e.g. [41]) or more explicitly by writing down a representation for
u near the corner Pm based on separation of variables in polar coordinates centred on Pm

[23, theorem 2.3]. The resulting bound is the following, showing that V +
m (x, k) has the classic

corner singularity behaviour near Pm where the exterior corner angle is Ωm.

Theorem 2.6. [23, Corollary 3.4] Suppose that each side of the polygon has length at least
λ/8, and, for x ∈ Γ+, let s denote distance of x from the corner Pm. Then, for n = 0, 1, ...,
it holds that ∣∣∣∣

∂n

∂sn
V +

m (x, k)

∣∣∣∣ ≤ Cn uM k−αms−αm−n, for 0 < ks ≤ π/12,

where αm := 1 − π/Ωm ∈ (0, 1/2), and the value of the constant Cn > 0 depends only on n.
The same bound applies to the tangential derivatives of V −

m (x, k) but with s denoting distance
along Γm from the corner Pm+1, and with αm replaced by αm+1.

14



The detailed information in the above bounds enables us to construct finite element spaces
which are well-adapted to approximating the functions V ±

m . One possibility, used in [23],
adapted from [26], is to use a discontinuous piecewise polynomial approximation for each
of V +

m and V −
m on Γm. Thus V +

m can be approximated using piecewise polynomials of some
degree p, on a mesh which has a classical grading near the corner Pm where V +

m is singular as
quantified in Theorem 2.6, and then has a geometric grading over the rest of Γm, with the two
meshes joined in a smooth manner. In detail, in the case when each side of the polygon has
length Lm ≥ λ, defining q := (2p+ 3)/(1 − 2αm), it is shown in [23] that a mesh appropriate
for approximating V +

m (x, k), given the bounds in the above theorems, consists of the points

si = λ

(
i

N

)q

, i = 0, . . . , N, and sN+j := λ

(
Lm

λ

)j/N+
m

, j = 1, . . . , N+
m. (2.22)

Here N , the number of subintervals in the interval of length λ adjacent to the corner Pm, is
the parameter controlling the mesh refinement, and N+

m is the smallest integer greater than
or equal to − log(Lm/λ)/(q log(1 − 1/N)). Based on this mesh, an appropriate piecewise
polynomial approximation space for V +

m (x, k) is

S+
m = span

{
χj(s)P (s) : P ∈ Pp, j = 0, 1, . . . , N +N+

m

}
, (2.23)

where χj(s) is the characteristic function of the interval (sj−1, sj). From the mean value
theorem applied to log(1−1/N) it follows that the number of subintervals in the geometrically
graded part of the mesh satisfies

N+
m < q−1N log(Lm/λ) + 1. (2.24)

The equations defining a suitable approximation space S−
m and mesh for approximating

V −
m (x, k) are identical to (2.22) and (2.23), except that q is defined replacing αm by αm+1 and
si is now the distance of the mesh point from the corner Pm+1. Since the value of q is different,
there is a different number N−

m of mesh points in the geometrically graded part of the mesh.
Recalling (2.20), we see that an appropriate approximation space for ∂u/∂n on Γm is

k exp(ikx · â)V (x, k) + exp(ikx · âm)S+
m + exp(−ikx · âm)S−

m, (2.25)

with V (x, k) given by (2.17). The full approximation space used in [6, 23] is the affine space
S̃N,k := k exp(ikx·â)V (x, k)+SN,k, where SN,k is the linear space of functions whose restriction
to side Γm is in the set exp(ikx · âm)S+

m +exp(−ikx · âm)S−
m, for m = 1, . . . ,M . The dimension

of SN,k, i.e. the number of degrees of freedom, is

DN = (p+ 1)
∑M

m=1(2N +N+
m +N−

m)
< 2MN

(
(p+ 1)(1 +N−1) + 1

2
log(L̄/λ)

)
,

(2.26)

by (2.24), where L̄ := (L1 . . . LM)1/M .
The main numerical analysis result of [23] is the following best approximation estimate:

Theorem 2.7. If each side of the polygon has length at least λ, then, for some positive
constant Cp, depending only on p and on the corner angles Ω1, Ω2, . . . , ΩM , it holds that

k−1/2 inf
φN∈S̃N,k

‖v(·, k) − φN‖L2(Γ) ≤ CpuM
(M [1 + log(L̄/λ)])p+3/2

Dp+1
N

.
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This theorem shows that, to maintain a given bound on the left hand side of the above
inequality, aiming to keep (1.15) fixed as k increases, it is necessary to increase the number
of degrees of freedom DN only in proportion to (log k)3/2. If one is happy to maintain con-
trol instead on k−1 infφ∈SN,k

‖v(·, k) − φ‖L2(Γ), aiming to keep (1.13) fixed, then one can even
decrease DN as k increases.

In [23] the approximation space SN,k is used as the basis of a Galerkin method for the
integral equation (1.4). Precisely, cf. (1.10), the approximation vN to v is defined by: Seek
vN ∈ S̃N,k such that

a(vN , wN) = (f, wN)L2(Γ) , for all wN ∈ SN,k .

As discussed in §2.1, in the case that Γ is a circle it is shown in [30] that the sesquilinear form
a is coercive, with a coercivity constant α independent of k. For general domains it is not yet
clear whether a is coercive, and in [23] the stability analysis is approached by the classical
methods for analysis of second kind equations discussed before equation (1.8) and in §3.1
below. Using these standard methods it is shown in [23] that, for each fixed k, there exists
a value for the stability constant C > 0 and an integer N0 such that the Galerkin solution is
well-defined and (1.7) holds for N ≥ N0. Combining this with Theorem 2.7 gives the estimate

k−1/2 ‖v(·, k) − vN‖L2(Γ) ≤ C CpuM
(M [1 + log(L̄/λ)])p+3/2

Dp+1
N

, (2.27)

for N ≥ N0, but, as discussed in §1 and in §3.1 below, this classical analysis does not give
any information about the dependence of C and N0 upon k. An approximation uN to u can
be computed by replacing v = ∂u/∂n by its the approximation vN in (1.3). This is shown in
[23, Theorem 5.4], via the inequality (1.14), to satisfy the error bound

supx∈D |u(x) − uN(x)|

supx∈D |u(x)|
≤ C C ′

p

(M [1 + log(L̄/λ]))p+2

Dp+1
N

, (2.28)

for N ≥ N0, where C ′
p is a positive constant depending only on p and the corner angles Ω1,

Ω2, . . . , ΩM . Numerical results supporting these error estimates are shown in [23].
A collocation method based on the identical approximation space SN,k and the identical

integral equation formulation is implemented in [6]. No stability analysis (even one based on
classical second-kind theory) is made in [6], but the numerical results support the conclusion
that there is little difference in accuracy between the Galerkin and the (rather easier to
implement) collocation method.

3 Stability and Conditioning

3.1 General considerations

In §1 we have split the numerical analysis of high frequency boundary element methods into
research on three related questions. We turn in this section to research related to the sec-
ond of these questions, namely the problem of estimating the value of the stability constant
C in (1.7). We note that, while the emphasis of this review is on boundary integral equa-
tion methods specifically adapted to high frequency scattering, the results of this section are
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equally applicable to stability analysis and conditioning for conventional piecewise polynomial
boundary element methods at high frequency.

We have noted already that, in the case that the sesquilinear form a is coercive, an upper
bound on the stability constant C in the case when vN is defined by the Galerkin method (i.e.
by (1.10)) is

C ≤
B

α
(3.1)

where B and α are the continuity and coercivity constants in (1.9). These constants are closely
related to the norms of A′ and its inverse as operators on L2(Γ). Indeed, by Cauchy-Schwarz,
for v, w ∈ L2(Γ) (and with ‖ · ‖ denoting throughout the norm of a bounded linear operator
on L2(Γ)),

|a(v, w)| = |(A′v, w)L2(Γ)| ≤ ‖A′v‖L2(Γ) ‖w‖L2(Γ)

≤ ‖A′‖ ‖v‖L2(Γ) ‖w‖L2(Γ).

Thus ‖A′‖ is a possible value for the constant B in (1.9). In fact (as follows from setting
w = A′v in the above inequality), ‖A′‖ is the smallest possible value for the constant B for
which (1.9) holds. Similarly, from the second of the inequalities (1.9),

‖A′v‖L2(Γ) ‖v‖L2(Γ) ≥ |(A′v, v)L2(Γ)| = |a(v, v)| ≥ α‖v‖2
L2(Γ),

so that
‖A′−1

‖ ≤ α−1.

Thus, the ratio B/α is bounded below by the condition number of the operator A′:

B

α
≥ cond A′ := ‖A′‖ ‖A′−1

‖. (3.2)

This gives one motivation for studying the condition number of A′ and its dependence
on k, which will be a main topic of this section. Another motivation is the following. The
inequality (3.1) is only useful if a is coercive, which we will see below is known to be the case
if Γ is a circle or sphere, but not, so far, more generally. Whether or not a is coercive, it is
known that the Galerkin method (1.10) is well-defined if and only if a satisfies the discrete
inf-sup condition: that, for some γN > 0 (the discrete inf-sup constant),

sup
06=w∈SN,k

|a(v, w)|

‖w‖L2(Γ)

≥ γN‖v‖L2(Γ), for v ∈ SN,k. (3.3)

If (3.3) holds (which it does, for example, if a is coercive, with γN = α), then a standard
upper bound for the stability constant C is

C ≤ 1 +
B

γN

. (3.4)

We do not know of any explicit bounds on the discrete inf-sup constant for high frequency
boundary element methods, but we note that ‖A′−1‖ = γ−1, where γ is the corresponding
continuous inf-sup constant, i.e.

γ := inf
06=v∈SN,k

sup
06=w∈SN,k

|a(v, w)|

‖v‖L2(Γ) ‖w‖L2(Γ)

. (3.5)
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Thus, if B is the smallest value for which the left-hand inequality in (1.9) holds, then

cond A′ =
B

γ
.

One can hope that studying cond A′ sheds some light on the behaviour, e.g. as a function of
k and the coupling parameter η, of B/γN and hence of the upper bound (3.4).

As mentioned in §1, stability can also be studied by classical second-kind integral equation
methods [7]: these have the attraction that they also apply to classes of collocation methods,
indeed to projection methods in general. Focusing on the Galerkin case, introducing the
operator PN of orthogonal projection from L2(Γ) to SN,k, and writing A′ as A′ = I + K, so
that K = D′ − iηS, it can be shown (e.g. [7]) that the formulation (1.10) is equivalent to the
operator equation

(I − PNK)vN = PNf,

and that the Galerkin method is well-defined if and only if I −PNK is invertible. Moreoever,
if the Galerkin method is well-defined, then

v − vN = (I − PNK)−1(v − PNv). (3.6)

Thus a possible value for the stability constant C in (1.7) is

C = ‖(I − PNK)−1‖.

In the case that Γ is C1, so that K is compact [33, 27], the classical results tell us that, as long
as the spaces SN have the standard approximation property that infφN∈SN

‖φ− φN‖L2(Γ) → 0
as N → ∞, for every φ ∈ L2(Γ), then ‖PNK −K‖ → 0 as N → ∞. Thus

C = ‖(I − PNK)−1‖ → ‖(I −K)−1‖ = ‖A′−1
‖

as N → ∞ (with k fixed). Alternatively, one can write (3.6) as

v − vN = (I + LN)(v − PNv), where LN := (I − PNK)−1PNK(I − PN), (3.7)

from which equation it is clear that (1.7) holds with

C = 1 + ‖LN‖ .

When K is compact it holds that ‖LN‖ → 0 as N → ∞ (since ‖K −KPn‖ → 0). Thus we
see that, at least in the case that Γ is C1, the bound (1.7) holds for every C > 1 provided N
is sufficiently large (N ≥ N0). However, as we have emphasised already in §1, it is not clear,
for a fixed value of C > 1, how large N0 needs to be for (1.7) to hold, and how this value
N0 depends on k. More fundamentally, for Galerkin methods based on hybrid approximation
spaces, such as we have discussed in §2, it is the aim to keep N fixed or almost fixed as k → ∞,
so that it is not clear that we will ever be in the regime where KPN is a good approximation to
K in operator norm so that we can prove that ‖LN‖ ≈ 0. On the other hand, it is reasonable
to hope that ‖(I − PNK)−1‖ will be well-approximated by ‖(I − K)−1‖ = ‖A′−1‖ before
‖PNK −K‖ is small, in which case (1.7) will hold with

C ≈ ‖A′−1
‖.

18



We have summarised what the known variational-based and classical second-kind integral
equation techniques can tell us about the stability constant C. For a recent analysis which is,
roughly speaking, intermediate between the two techniques, and its application to the error
analysis of conventional boundary integral equation methods at high frequency, see [9].

In the next subsection we discuss what is known about the coercivity constant α, the con-
tinuity constant B (the smallest choice for which is ‖A′‖), ‖A′−1‖, and cond A′ = ‖A′‖ ‖A′−1‖,
and their dependence on the wavenumber k and the coupling parameter η in (1.5).

3.2 Coercivity and condition numbers

Studies of the conditioning and spectral properties of integral operators (and their discreti-
sations) in acoustic and electromagnetic scattering date back to Kress and Spassov [49] (and
see [48, 3, 4, 37, 66, 65, 64, 17, 30, 24, 20]). Most studies have focussed on the special case
when Γ is a circle or sphere in which case a very complete theory is possible due to the fact
that all the integral operators S, D, D′ and H, defined in §1, operate diagonally in the basis
of trigonometric polynomials (d = 2) or spherical harmonics (d = 3). The analysis is further
simplified by the fact that D = D′ and so A = A′ when Γ is a circle/sphere.

Suppose Γ is the unit circle, with parametrisation γ(s) = (cos s, sin s). With this parametri-
sation L2(Γ) is isometrically isomorphic to L2[0, 2π]. We can write any w ∈ L2[0, 2π] = L2(Γ)
as

w(s) =
1

2π

∑

m∈Z

ŵm exp(ims), where ŵm :=

∫ 2π

0

ϕ(s) exp(−ims) ds,

in which case the L2-inner product and norm are given by (v, w)L2(Γ) = 1
2π

∑
m∈Z

v̂mŵm and
‖w‖2

L2(Γ) = 1
2π

∑
m∈Z

|ŵm|
2. Then (see [48, equation (4.4)] or [30, Lemma 4.1]), we have the

Fourier representation:

A′w(s) = 1
2π

∑
m∈Z

λmŵm exp(ims)

with λm = πH
(1)
|m|(k)

[
ikJ ′

|m|(k) + ηJ|m|(k)
]
.

(3.8)

Note that λm is the eigenvalue of A′ = A corresponding to the eigenfunction exp(±ims). As
argued in [48], since the eigenfunctions exp(ims), m ∈ Z, are a complete orthonormal system
in L2[0, 2π] = L2(Γ), it holds that

‖A′‖ = sup
m∈N∪{0}

|λm|, ‖A′−1
‖ =

(
inf

m∈N∪{0}
|λm|

)−1

, (3.9)

so that

cond A′ =
supm∈N∪{0} |λm|

infm∈N∪{0} |λm|
. (3.10)

Further, for w ∈ L2(Γ) we have that

|a(w,w)| = |(A′w,w)L2(Γ)| ≥ ℜ(A′w,w)L2(Γ)

=
1

2π

∑

m∈Z

ℜ(λm)|ŵm|
2 ≥ α‖w‖2

L2(Γ),

where
α = inf

m∈N∪{0}
ℜ(λm). (3.11)
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For the case d = 3, when Γ is a sphere of unit radius, a similar analysis applies, based
on the fact that the integral operators on the sphere are diagonal operators in the space of
spherical harmonics. The corresponding expression for the symbol λm is

λm = ikh(1)
m (k) (kj′m(k) + iηjm(k)) , (3.12)

where jm and h
(1)
m are the spherical Bessel and Hankel functions respectively. This formula

can be found, for example, in [48, 37] – see also [17]. The formulae (3.9), (3.10), and (3.11)
hold also in the 3D case [48, 30], with λm given by (3.12).

We see that, for the case of a circle/sphere, studying the coercivity and conditioning of
A′ reduces to the study of the behaviour of explicitly known eigenvalues λm, as a function of
m, the wavenumber k, and the coupling parameter η. The early papers [49, 48] carried out
a precise theoretical and numerical study of this issue for the case of small k, with emphasis
on choosing η so as to minimise the condition number. The thesis of Giebermann [37] made
a similar careful study of the large k case, which is our main focus here, with a mixture of
rigorous analysis, indicative asymptotics, and numerical calculation. The substantial gaps in
the analysis in [37] (in particular, the estimates of the coercivity constant α in [37] were sug-
gestive rather than rigorous: the issue is to obtain sufficiently sharp bounds on the relevant
combinations of Bessel functions that are uniform in argument and order) were filled recently
in [30], for the explicit choice η = k (previously proposed as optimal for conditioning for the
unit circle when k ≥ 1 in e.g. [49, 3, 4]). Further, one of the bounds in [30] was refined
recently in [9] (an improved upper-bound on the norm of D, the double-layer operator part
of A′). Additionally, there are techniques and results that we shall mention below, described
in [24, 20], that apply to general boundaries, and so to the circle/sphere in particular. The
upshot (see [20] for more historical detail) is that the following results are now known for the
circle/sphere. In all these bounds c ≥ 1 denotes some absolute constant, not necessarily the
same at each occurrence.

Coercivity for the circle/sphere ([30, 20]). With the choice of coupling parameter η = k,
A′ = A is coercive for all sufficiently large k, with α bounded above and below by constants
independent of k. Indeed, for the circle,

α = 1 for all sufficiently large k.

Conditioning for the circle/sphere ([30, 20]).

1 ≤ ‖A′−1
‖ = ‖A−1‖ ≤ c

(
1 +

1 + k

η

)
; (3.13)

indeed, for a circle and η = k it holds that ‖A′−1‖ = ‖A−1‖ = 1 for all sufficiently large k.
For a sphere,

1 ≤ ‖A′‖ = ‖A‖ ≤ c
(
1 + η(1 + k)−2/3

)
; (3.14)

the same bound holds for a circle in the case η = k. Thus, for a sphere,

cond A′ = cond A ≤ c
(
1 + k1/3

)
, (3.15)

if η = 1 + kp, for some p ∈ [2/3, 1]. The same bound holds for a circle, for k ≥ 1, with the
choice η = 1 + k.

20



We note that the above bounds (3.13)–(3.15) suggest that taking η = 1 + kp, for some
p ∈ [2/3, 1] will be approximately optimal in terms of minimising the condition numbers of A′

and A. In fact, for a sphere of radius R0, based on low frequency calculations and analysis,
the specific choice

η = max

(
1

2R0

, k

)
(3.16)

was made in [48], and there is further evidence supporting this choice for higher frequencies in
[3, 4]. Recently, Banjai and Sauter [9] have pointed out that, as is clear from (3.15), choosing
η = k2/3 gives the same growth rate as k → ∞ as the choice η = k, and calculations for the
case of a circle confirm almost identical values of condition number for η = k/2 and η = k2/3

at high wavenumbers.
In recent work by the authors and their collaborators [30, 24, 20, 21] rigorous upper and

lower bounds on ‖A‖ = ‖A′‖ and ‖A−1‖ = ‖A′−1‖ have been obtained for rather general classes
of scatterers, which results show that: (i) the detail of the geometry of Γ plays a strong role in
determining the dependence of these norms on k; (ii) the growth of the condition number with
k can be much faster than the mild growth (3.15) for a circle/sphere. We briefly summarise
the techniques that have been used and the results that have been obtained.

A first, simple, observation [20, Lemma 4.1] is that both ‖A′‖ and ‖A′−1‖ are bounded
below by the value 1, as a consequence of being perturbations of the identity, if some part
of Γ is at least C1 smooth. To obtain upper bounds on ‖A′‖ rather crude methods are used
in [20] which ignore the oscillation in the kernels of the integral operators D′ and S (whose
norms are bounded separately, and then ‖A′‖ is bounded using the triangle inequality). For
example, we bound ‖S‖ using the estimate

‖S‖ ≤ 2 sup
x∈Γ

∫

Γ

|Φ(x, y)| ds(y) ≤ k(d−3)/2(2π)(1−d)/2

∫

Γ

ds(y)

|x− y|(d−1)/2
, (3.17)

the last inequality in fact an equality in the 3D case (d = 3). Our resulting bound on the
norm of A′ is the following:

Theorem 3.1. [20, Theorem 3.6] For every Lipschitz Γ, there exist positive constants c1 and
c2, dependent only on Γ, such that

‖A‖ = ‖A′‖ ≤ 1 + c1k
(d−1)/2 + c2ηk

(d−3)/2,

for all k > 0.

In 2D (d = 2), for the case Γ simply-connected and smooth, this bound was shown previ-
ously, for all sufficiently large k, in [30].

We note that these bounds predict, for the usual choice η = k, a faster growth than
(3.14) for a circle/sphere as k increases, namely proportional to k1/2 in 2D, k in 3D. Perhaps
surprisingly, although the techniques used to obtain the above bounds ignore the increasing
oscillation in the kernels of the integral operators as k increases, it is shown in [20] that in 2D
(nothing is known yet about the 3D case) the above bounds are sharp, in the sense that there
exist Lipschitz boundaries Γ for which ‖S‖ grows proportional to k−1/2 and ‖D′‖ arbitrarily
close to k1/2. In particular:
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Lemma 3.2. [20, Theorem 4.2] In the 2D case, if Γ contains a straight line section of length
a, then

‖S‖ ≥

√
a

πk
+O(k−1)

as k → ∞ and

‖A‖ = ‖A′‖ ≥ η

√
a

πk
− 1 +O(ηk−1)

as k → ∞, uniformly in η > 0.

The quantitative information in the above lemma is pretty sharp. Indeed if Γ is a straight
line of length a then the formula (3.17) tells us that

‖S‖ ≤ 2

√
a

πk
.

The technique used to obtain Lemma 3.2 is to construct a φk ∈ L2(Γ), dependent on
the wavenumber k, so as to approximately maximise ‖Sφk‖L2(Γ)/‖φk‖L2(Γ). For the proof of
Lemma 3.2 the choice φk(x) = exp(ikx · ĉ) on the straight line part of Γ, and zero elsewhere
on Γ, where the unit vector ĉ is parallel to the straight line section of Γ, does the trick.

The same technique can be used to construct lower bounds that explore the subtle inter-
action between the geometry and the size of ‖S‖ and ‖D‖ = ‖D′‖. For example, one result
from [20] is (cf. the bound (3.14) for the case of a circle/sphere):

Lemma 3.3. [20, Corollary 4.5] Suppose (in the 2D case) that Γ is locally C2 in a neighbour-
hood of some point x∗ on the boundary and let R be the radius of curvature at x∗. If R <∞,
then, as k → ∞,

‖S‖ ≥
1

2

(
R

π

)1/3

(2k)−2/3(1 + o(1)). (3.18)

If also ηk−2/3 → ∞ as k → ∞, then also

‖A′‖ = ‖A‖ ≥
η

2

(
R

π

)1/3

(2k)−2/3(1 + o(1)),

as k → ∞.

Other results in [20] explore what happens if the radius of curvature vanishes (and other
higher order smoothness conditions) and under what conditions ‖D′‖ = ‖D‖ can be large.
The lower bounds in the above lemmas meet the upper bounds in Theorem 3.1 in some cases.
For example, if Γ is a polygon (as in §2.2) and the usual choice η = k is made then, for some
constants c1 and c2,

c1k
1/2 ≤ ‖A′‖ = ‖A‖ ≤ c2k

1/2,

for all sufficiently large k. In other cases, for example for an ellipse or some other smooth,
strictly convex obstacle, there is a gap between our upper and lower bounds: e.g. for η = k
our upper bound (Theorem 3.1) gives a growth rate of k1/2 while our lower bound (Lemma
3.3) has a growth rate of k1/3. We suspect, from the case of the circle (3.14), and from the
evidence of numerical simulations in [21], that it is our lower bounds that are sharp.
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One technique that has not been employed yet to obtain upper bounds, which is standard
in the harmonic analysis literature [61], and which could be the tool to close the gap, is the
observation that, e.g.

‖D′‖ = ‖D‖ = ‖DD∗‖1/2.

Here D∗ is the Hilbert space adjoint of D (whose kernel is the complex conjugate of the kernel
of D′). The point is that DD∗ is itself an integral operator whose norm can be estimated
by the (relatively crude) methods we use to prove Theorem 3.1, and that the kernel of the
integral operator DD∗ is given as an oscillatory integral involving the wavenumber k, whose
values may be estimated by standard oscillatory integral techniques [61].

To provide upper bounds on ‖A′−1‖ = ‖A−1‖ a completely different technique has been
used, namely a priori bounds derived from Rellich-type identities and subtle properties of
radiating solutions of the Helmholtz equation [24]. These upper bounds apply for a general
class of geometries, namely whenever the scatterer Ω is simply-connected, piecewise smooth,
starlike, and Lipschitz. For the rest of this section we assume, without loss of generality, that
the origin lies in Ω (0 ∈ Ω). Then the class of domains studied in [24] are those satisfying the
following assumption (Assumption 3 in [24]):

Assumption 3.4. Γ is Lipschitz and is C2 in a neighbourhood of almost every x ∈ Γ. Further

δ− := ess inf
x∈Γ

x · n(x) > 0.

Note that Assumption 3.4 holds, for example, if Ω is a convex polyhedron (and 0 ∈ Ω),
with δ− the distance from the origin to the nearest side of Γ.

Define

R0 := sup
x∈Γ

|x|, δ+ := ess sup
x∈Γ

x · n(x), δ∗ := ess sup
x∈Γ

|x− (x · n(x))n(x)|.

Then a main result in [24] is the following:

Theorem 3.5. Suppose that Assumption 3.4 holds and η > 0. Then

‖A′−1
‖ = ‖A−1‖ ≤ B (3.19)

where B is given by the formula:

1

2
+

[(
δ+
δ−

+
4δ∗2

δ2
−

)[
δ+
δ−

(
k2

η2
+ 1

)
+
d− 2

δ−η
+
δ∗2

δ2
−

]
+

(1 + 2kR0)
2

2δ2
−η

2

]1/2

.

To understand this expression for B, suppose first that Γ is a circle or sphere, i.e. Γ = {x :
|x| = R0}. Then δ− = δ+ = R0 and δ∗ = 0 so

B = B0 :=
1

2
+

[
1 +

k2

η2
+
d− 2

R0η
+

(1 + 2kR0)
2

2R2
0η

2

]1/2

. (3.20)

In the general case, since δ− ≤ δ+ ≤ R0 and 0 ≤ δ∗ ≤ R0, it holds that B ≥ B0. Note that the
expression B blows up if k/η → ∞ or if δ+/δ− → ∞, or if δ−η → 0, uniformly with respect
to the values of other variables.
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An important implication of Theorem 3.5 is that, whenever Γ is starlike in the sense of
Assumption 3.4, if η is chosen so that

max(l1R
−1
0 , l2k) ≤ η ≤ max(u1R

−1
0 , u2k), (3.21)

for some positive constants l1, l2, u1, and u2, then, for some constant c > 0, ‖A′−1‖ = ‖A−1‖ ≤
c, for all k > 0. For example, choosing

η = R−1
0 + k, (3.22)

which satisfies (3.21) with l1 = l2 = 1 and u1 = u2 = 2, defining θ := R0/δ−, and noting that
δ+/δ− ≤ θ, δ∗/δ− ≤ θ, we see that Theorem 3.5 implies that

‖A′−1
‖ = ‖A−1‖ ≤ B ≤

1

2
+ θ[2 + (1 + 4θ)(d+ θ)]. (3.23)

Based on computational experience, Bruno and Kunyansky [15, 16] recommend the choice
η = max(6T−1, k/π), where T is the diameter of the obstacle, which satisfies (3.21), this
formula chosen on the basis of minimising the number of GMRES iterations in an iterative
solver. Another choice of η satisfying (3.21) is (3.16), recommended as optimal for a sphere
for low frequency in [48].

Putting together the bounds of Theorems 3.1 and 3.5, we see that, in the case when Γ is
piecewise C2, Lipschitz and starlike, satisfying Assumption 3.4, it holds, for some constant
c ≥ 1 depending on Γ, that

1 ≤ cond A′ = cond A ≤ c
(
1 + k(d−1)/2 + ηk(d−3)/2

) (
1 +

1 + k

η

)
. (3.24)

Thus, for some constant c′ ≥ 1,

1 ≤ cond A′ = cond A ≤ c′
(
1 + k(d−1)/2

)
, (3.25)

if η is chosen to satisfy (3.21), e.g. given specifically by (3.16) or (3.22).
If Γ is not starlike then ‖A′−1‖ = ‖A−1‖ can grow as k increases. In particular, a 2D

example is presented in [20, 21] in which Γ is a trapping-type obstacle, with two straight
parallel sides separated by the medium of propagation. It is shown in [20], by combining
arguments from [24] with methods of estimating multi-dimensional oscillatory integrals from
[47], that, for some constant c > 0,

‖A′−1
‖ = ‖A−1‖ ≥ ck9/10(1 + η/k)−1

and that
cond A′ = cond A ≥ c(1 + k14/10)

for the usual choice of η satisfying (3.21).

4 Implementation

This paper has concentrated on the theory of integral equation formulations for the Helmholtz
equation and their numerical solution by Galerkin and collocation methods in the high-
frequency case. A hugely important question, which we only have space to deal with briefly,

24



is whether these methods can be realised with computation times which are reasonable as
k → ∞, in particular, do the computation times reflect the theoretical estimates which we
have given above? We describe briefly in this section, work on two different issues which are
related to this question.

Computation of Oscillatory Stiffness Matrix Entries.
The Galerkin and collocation methods described above require work on the assembly of stiff-
ness matrices, the entries of which are given as oscillatory integrals. The Nyström approach
of Bruno et. al. [12, 13] involves a direct approach to the integration problem, without the
intermediate step of considering it as part of an expansion method for the integral equation.
In any case oscillatory integrals defined on (subsets of) obstacle boundaries with, in addition,
weakly singular integrands and complicated phase functions must be computed.

In particular, the hybrid Galerkin discretisation (with (2.1)) of the representative integral
operator v(x) 7→

∫
Γ
Φ(x, y)v(y)ds(y) taken from (1.4), leads to double integrals of the form

∫

Sn′

∫

Sn

{
Φ(x, y) exp(ik[γm(y) − γm′(x)])

}
Pn(y)Pn′(x)ds(y)ds(x) , (4.1)

where the Pn are (piecewise) polynomial basis functions with supports Sn. Because the phase
of the fundamental solution Φ is known, the kernel (in the braces) in (4.1) may also be written
as exp(ik[|x−y|+γm(y)−γm′(x)])K(x, y), withK (weakly) singular but non-oscillatory, reveal-
ing an oscillatory double integral with a complicated geometry-dependent phase. Collocation
methods lead to the simpler (but still oscillatory) single integrals:

∫

Sn

{
Φ(x, y) exp(ik[γm(y) − γm′(x)])

}
Pn(y)ds(y) , (4.2)

to be evaluated at collocation points x.
There has been considerable recent activity on problems of oscillatory integration in general

(e.g. [46], [47]), which has provided new insight and analysis for classical methods such as
Filon’s rule and Levin’s method, and, by particularly exploiting asymptotic theory, has also
generated new classes of methods. We refer to the separate review [45] in this volume for
more detail.

Building on the progress on oscillatory integration in general, Huybrechts and Vandewalle
[44] described a general method for computing integrals of the form (4.2) using a numerical
variant of the method of steepest descent, in which the integral over Sn (parametrised by a real
interval) is computed via an integral over a path in the complex plane over which the integrand
is not oscillatory. A very nice observation which then follows is that if the collocation point x
is not in Sn, if the phase has no stationary points, and if Pn has sufficiently many vanishing
derivatives then (4.2) vanishes rapidly as k increases. Hence if local basis functions are used
in the collocation method, then the collocation matrix can be replaced by a sparse matrix for
large k. The only non-zero entries of the sparse matrix correspond to points x and supports Sn

where either x ∈ Sn (a “singular point”), or the phase has a stationary point. Although there
is no stability analysis of the method in [44], the numerical results suggest this idea produces
a powerful novel algorithm. This idea was further developed in [43, 62] in the context of
the partition of unity boundary integral method with plane wave basis functions, applied
to general Helmholtz problems (as distinct from the plane wave scattering considered here).
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In this case the oscillatory integrals can contain very complicated distributions of stationary
points.

An application of the method of stationary phase to the computation of collocation ma-
trices arising in boundary integral methods with global basis functions on domains which are
diffeomorphic to the sphere is presented in [36]. There the chief difficulty is the problem of
locating the stationary points for general geometries.

When choosing quadrature rules for implementing boundary integral methods in the high
frequency case, one should bear in mind error estimates for the solution of the integral equation
such as (2.14) and Theorem 2.7. It is clear that one requires sharp quadrature error estimates
as N → ∞ with explicit dependence on k in the asymptotic constant. When we apply
quadrature to approximate the stiffness matrix for these methods, we only need to ensure
that the resulting perturbations satisfy the same kind of error estimates and can then apply
classical “Strang Lemma” arguments to obtain error estimates for the whole practical method.
Progress on this issue for the 2D Galerkin case on a polygon in the context of hp-Galerkin
methods has been made by Melenk and Langdon [54]. This approach employs a change of
variable of the form τ = |x− y|+ γm(y)− γm′(x) for either fixed x or y. This ensures that the
oscillation in (4.1) is in one variable only, and then applies Filon quadrature. However much
work remains to prove rigorous error estimates and extend the results to 3D.

In an intriguing different approach [28] computes integrals such as (4.1) on a subgrid
which resolves the oscillations and does this efficiently using a multipole expansion of the
kernel factor Φ(x, y) for (x, y) in each block of a tree-based decomposition of Γ× Γ. This is a
practical alternative to difficult stationary-phase based methods.
Fast methods for dense systems. Matrix compression and fast solvers for non-local op-
erator equations are a major development in numerical analysis in the last 25 years. Typi-
cal solvers usually consist of a (preconditioned) Krylov iterative method coupled with a fast
matrix-vector multiplication based on kernel approximation (e.g. multipole or panel clustering,
or more recently H-matrices). The fast multiplication algorithms work by approximating the
(weakly singular) kernel K(x, y) by combinations of separable functions of the form ai(x)bj(y)
when x, y are sufficiently separated. Blocks of the dense stiffness matrix are thus replaced
by low rank matrices, with the choice of blocking and approximation controlled by a tree-
based hierarchical algorithm. This allows matrix-vector multiplications with the N×N dense
boundary element stiffness matrix in close to O(N) time. This method has been extended to
high frequency Helmholtz problems approximated by conventional boundary elements (e.g.
[26, 29]), but the extension to hybrid approximations is an open and fascinating problem.
This is important, especially in 3D, since then, even using the hybrid approximation spaces
proposed above, N may still be large. The results of [28] show that replacing the Helmholtz
kernel with a separable expansion in the far field can still yield low rank approximations even
in the hybrid case, but much work remains to be done to yield a solver for which the cost is
close to O(N) with a k-independent constant.

Acknowledgement: We would like to thank Valery Smyshlyaev for guiding us through
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