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ABSTRACT. We study the classical combined field integral
equation formulations for time-harmonic acoustic scattering
by a sound soft bounded obstacle, namely the indirect for-
mulation due to Brakhage-Werner/Leis/Panič, and the direct
formulation associated with the names of Burton and Miller.
We obtain lower and upper bounds on the condition num-
bers for these formulations, emphasising dependence on the
frequency, the geometry of the scatterer, and the coupling pa-
rameter. Of independent interest we also obtain upper and
lower bounds on the norms of two oscillatory integral oper-
ators, namely the classical acoustic single- and double-layer
potential operators.

1. Introduction. In this paper we consider the classical problem of
scattering of a time-harmonic acoustic wave by a bounded, sound soft
obstacle occupying a compact set Ω ⊂ R

d (d = 2 or 3) with Lipschitz
boundary Γ. The wave propagates in the exterior domain Ωe = R

d \Ω
and we suppose that the medium of propagation in Ωe is homogeneous,
isotropic and at rest, and that a time harmonic (e−iωt time dependence)
pressure field ui is incident on Ω. Denoting by c > 0 the speed of sound,
we assume that ui is an entire solution of the Helmholtz (or reduced
wave) equation with wave number k = ω/c > 0.

The first author gratefully acknowledges the support of a Leverhulme Trust
Fellowship; the first three authors the support of Visiting Fellowships of the Isaac
Newton Institute, Cambridge; the fourth author the support of a Marie Curie
Fellowship of the European Commission (MEIF-CT-2005-009758).

Received by the editors on October 3, 2007, and in revised form on June 2, 2008.

DOI:10.1216/JIE-2009-21-2-229 Copyright c©2009 Rocky Mountain Mathematics Consortium

229



230 S. CHANDLER-WILDE, I. GRAHAM, S. LANGDON AND M. LINDNER

Then the problem we consider is to find the resulting time-harmonic
acoustic pressure field u which satisfies the Helmholtz equation

(1.1) Δu+ k2u = 0 in Ωe

and the sound soft boundary condition

(1.2) u = 0 on Γ := ∂Ωe,

and is such that the scattered part of the field, us := u − ui, satisfies
the Sommerfeld radiation condition

(1.3)
∂us

∂r
− ikus = o(r−(d−1)/2)

as r := |x| → ∞, uniformly in x̂ := x/r. (This latter condition
expresses mathematically that the scattered field us is outgoing at
infinity; see e.g. [13]). It is well known that this problem has exactly
one solution under the constraint that u and ∇u be locally square
integrable; see e.g. [24].

The aim of this paper is to understand the behaviour, in the im-
portant but difficult high frequency limit k → ∞, of standard refor-
mulations of this problem in terms of second kind boundary integral
equations. Let Φ(x, y) denote the standard free-space fundamental so-
lution of the Helmholtz equation, given, in the 2D and 3D cases, by

(1.4) Φ(x, y) :=

⎧⎪⎪⎨⎪⎪⎩
i
4
H

(1)
0 (k|x− y|), d = 2,

eik|x−y|

4π|x− y| , d = 3,

for x, y ∈ R
d, x �= y, where H(1)

0 is the Hankel function of the first
kind of order zero. It was proposed independently by Brakhage &
Werner [5], Leis [22], and Panič [28], as a means to obtain an integral
equation uniquely solvable at all wave numbers, to look for a solution to
the scattering problem in the form of the combined single- and double-
layer potential

(1.5) us(x) :=
∫

Γ

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y) − iη
∫

Γ

Φ(x, y)ϕ(y) ds(y),

x ∈ Ωe,
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for some non-zero value of the coupling parameter η ∈ R. (In this
equation ∂/∂ν(y) is the derivative in the normal direction, the unit
normal ν(y) directed into Ωe.) It follows from standard boundary trace
results for single- and double-layer potentials that us, given by (1.5),
satisfies the scattering problem if and only if ϕ satisfies a second kind
boundary integral equation on Γ; see [13] and, for the Lipschitz case,
[10, 26]. This integral equation, in operator form, is

(1.6) (I +Dk − iηSk) ϕ = g,

where I is the identity operator, Sk and Dk are single- and double-layer
potential operators, defined by1

(1.7) Skϕ(x) := 2
∫

Γ

Φ(x, y) ϕ(y) ds(y), x ∈ Γ,

and

(1.8) Dkϕ(x) := 2
∫

Γ

∂Φ(x, y)
∂ν(y)

ϕ(y) ds(y), x ∈ Γ,

and g := −2ui|Γ is twice the Dirichlet data for the scattered field on Γ.

We will study (1.6) as an operator equation on the space L2(Γ). For
every ϕ ∈ L2(Γ), the right hand sides of (1.7) and (1.8) are well-defined
almost everywhere on Γ, withDkϕ(x) understood as a Cauchy principal
value, and both Sk and Dk are bounded operators on L2(Γ); see e.g.
[24, 25, 26]. Choosing η �= 0 ensures that (1.6) is uniquely solvable.
Precisely,

(1.9) Ak,η := I +Dk − iηSk

is invertible as an operator on L2(Γ). That this is true generally
for Lipschitz Γ is shown in [10, 26]; for a detailed discussion of the
operator Ak,η in the case when Γ is C2 see [13]. We note further that,
generalising this result, it is shown in [10] that Ak,η is invertible as an
operator on the Sobolev space Hs(Γ), for 0 ≤ s ≤ 1.

An alternative integral equation formulation of the scattering prob-
lem can be obtained by applications of Green’s theorem. From [14,

1Our notation follows that of [13]. Some other authors omit the factor 2 in front
of the integral signs in (1.7) and (1.8).
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Theorem 3.12] and [24, Theorems 7.15, 9.6] it follows that, if u sat-
isfies the scattering problem, then a form of Green’s representation
theorem holds, namely

(1.10) u(x) = ui(x) −
∫

Γ

Φ(x, y)
∂u

∂ν
(y) ds(y), x ∈ Ωe.

The constraint that u and ∇u are locally square integrable in Ωe implies
that (see e.g. [24]) the normal derivative ∂u/∂ν in this equation is well-
defined as an element of the Sobolev space H−1/2(Γ). Two integral
equations for ∂u/∂ν can be obtained by taking the trace and the normal
derivative, respectively, of (1.10), namely

(1.11) Sk
∂u

∂ν
= 2ui

and

(1.12)
∂u

∂ν
+D′

k

∂u

∂ν
= 2

∂ui

∂ν
.

Here D′
k is the integral operator defined, for ϕ ∈ L2(Γ), by

(1.13) D′
kϕ(x) := 2

∫
Γ

∂Φ(x, y)
∂ν(x)

ϕ(y) ds(y), x ∈ Γ.

It is well known (e.g. [13]) that the integral equations (1.11) and (1.12)
fail to be uniquely solvable if −k2 is an eigenvalue of the Laplacian in Ω
for, respectively, homogeneous Dirichlet and Neumann boundary condi-
tions on Γ, but that a uniquely solvable integral equation is obtained by
taking an appropriate linear combination of these equations. Clearly,
for every η ∈ R it follows from the above equations that

(1.14) A′
k,η
∂u

∂ν
= f,

where

(1.15) A′
k,η := I +D′

k − iηSk

and

f(x) := 2
∂ui

∂ν
(x) − 2iηui(x), x ∈ Γ.
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Observe that (see e.g. [25] for a proof in the general Lipschitz case) D′
k

is the transpose of Dk and that Sk is its own transpose, so that A′
k,η is

the transpose of Ak,η in the same sense, namely that

(1.16) (φ,Ak,ηψ)Γ = (A′
k,ηφ, ψ)Γ, for φ ∈ L2(Γ), ψ ∈ L2(Γ),

where (φ, ψ)Γ :=
∫
Γ φψds. This identity implies that A′

k,η is also a
bounded operator on L2(Γ) with

(1.17) ‖A′
k,η‖ = ‖Ak,η‖,

and that A′
k,η is invertible (as an operator on L2(Γ)) if and only if Ak,η

is invertible. Moreover, if they are both invertible, it holds that

(1.18) ‖A′
k,η

−1‖ = ‖Ak,η
−1‖.

In particular, Ak,η and also A′
k,η is invertible and (1.18) holds for

η �= 0. In fact (see [10], [11, §4]), for η �= 0, A′
k,η is invertible as an

operator on the Sobolev space Hs(Γ), for −1 ≤ s ≤ 0. Thus, noting
that f ∈ L2(Γ), (1.14) has exactly one solution in H−1/2(Γ) and this
solution is in L2(Γ).

Our aim in this paper is to study the conditioning of the two standard
integral equation formulations, (1.6) and (1.14), of the exterior sound
soft scattering problem. Specifically we are interested in upper and
lower bounds on the (identical) condition numbers of Ak,η and A′

k,η,
given by

cond A′
k,η = cond Ak,η = ‖Ak,η‖ ‖Ak,η

−1‖,
and so we are interested in upper and lower bounds on the norms
‖Ak,η‖ = ‖A′

k,η‖ and ‖Ak,η
−1‖ = ‖A′−1

k,η‖. Our emphasis is on
understanding the dependence on the wave number k, especially in
the limit k → ∞, and on the coupling parameter η, and on exploring
the influence of the shape of Γ.

The questions we address have had some previous attention, starting
with the work of Kress and Spassov [19] and Kress [18] (and see [2, 3,
4, 8, 11, 15, 17]); we will summarise these previous results in the next
section. But we note that, with the exception of recent bounds in [4,
11, 15], rigorous estimates valid in the limit as k → ∞ have not been
obtained. Moreover, research to date has focussed almost entirely on
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the case when Γ is a circle or sphere where Fourier analysis methods are
possible. The estimates we will derive in this paper will address these
gaps in the literature and show that the behaviour of cond Ak,η as a
function of k depends strongly, and in a subtle way, on the geometry
of Γ.

The plan of the rest of this paper is as follows. As already mentioned,
in §2 we discuss previous work, in particular what is known about ‖Sk‖,
‖Dk‖, ‖Ak,η‖, and ‖A−1

k,η‖ and their dependence on k and η in the
special case of a circle and sphere. We also recall a recent and rather
sharp upper bound on ‖A−1

k,η‖ which applies (in 2D and 3D) whenever
Γ is Lipschitz, piecewise smooth, and starlike. In particular, we point
out that this bound implies that commonly recommended choices of η,
e.g. [18]

η = max
(

1
2R0

, k

)
,

where 2R0 is the diameter of Γ, have the desirable property that
‖A−1

k,η‖ ≤ C for k > 0, where the constant C depends (in an explicit
way spelled out in §2) only on the shape of Γ.

In §3 we obtain what look at first sight like fairly crude upper bounds
on ‖Sk‖ and ‖Dk‖ (and hence obtain, by the triangle inequality, upper
bounds on ‖Ak,η‖) for general Lipschitz domains in 2D and 3D. These
bounds are complemented in §4 by a number of lower bounds on ‖Sk‖,
‖Dk‖, and ‖Ak,η‖, mostly for the 2D case. One message from these
lower bounds is that, at least in the 2D case, the simple upper bounds
in §3 turn out to be rather sharp in their dependence on k. Precisely,
there exist Lipschitz boundaries Γ for which the ratio of the upper to
the lower bound: (i) remains bounded as k → ∞ in the case of ‖Sk‖;
(ii) increases arbitrarily slowly as k → ∞ in the case of ‖Dk‖. A second
message from these lower bounds is that the behaviours of ‖Sk‖ and
‖Dk‖ as k → ∞ depend in subtle (and different) ways on the geometry
of Γ.

In §5 we analyse a particular example of a non-starlike domain.
While the results in §2 show that, with an appropriate choice of η,
‖A−1

k,η‖ = O(1) as k → ∞ when Γ is starlike, in §5 we prove that
‖A−1

k,η‖, with the same choice of η, can grow as fast as k9/10 as k → ∞
when the domain is non-starlike.
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In §6 we summarise the results of sections 2-5 and examine their
implications for the condition number of Ak,η. The main message here
is that conditioning in the limit as k → ∞ depends strongly on the
geometry of Γ, and that conditioning can be much worse than in the
case of a circle/sphere. For example, in 2D, and with the usual choice
η = k, our conclusion is that cond Ak,η = cond A′

k,η grows like k1/3 for
a circle, like k1/2 for a starlike polygon, and at least as fast as k7/5 for
the trapping domains studied in §5. We recommend that readers more
interested in the results and their implications for conditioning than in
the details of the proofs read §6 before the rest of the paper.

We finish this introduction by introducing some notation and prop-
erties relating to Bessel functions that we shall use throughout. For
m ∈ N0 := N∪ {0} let Jm and Ym denote the Bessel functions of order
m of the first and second kinds, respectively, and let H(1)

m := Jm + iYm

denote the Hankel function of the first kind of order m. (Our notations
and definitions follow [1].) Moreover, for t > 0 let

(1.19) Mm(t) := |H(1)
m (t)|.

We will use throughout the fact that Mm(t) is decreasing as t increases
[34, §13.74].

An informative integral representation for H(1)
0 is [27]

(1.20) H
(1)
0 (t) = −2i

π
eit

∫ ∞

0

e−rt

r1/2(r − 2i)1/2
dr, t > 0,

with �(r − 2i)1/2 > 0 for r > 0, where � denotes the real part of a

complex number. This representation implies, since H(1)
1 = −H(1)

0

′
,

that

(1.21) H
(1)
1 (t) =

2i
π

eit

∫ ∞

0

(i − r)e−rt

r1/2(r − 2i)1/2
dr, t > 0.

From these representations follow the bounds

(1.22) M0(t) ≤ 2
π

∫ ∞

0

e−rt

(2r)1/2
dr =

√
2
πt
, t > 0,
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and

(1.23) M1(t) ≤ 2
π

∫ ∞

0

(
1

(2r)1/2
+ 1

)
e−rt dr =

√
2
πt

+
2
πt
, t > 0.

From (1.21) we deduce moreover that, for t > 0,

e−itH
(1)
1 (t) +

2i
πt

=
2i
π

∫ ∞

0

(
(i − r)

r1/2(r − 2i)1/2
+ 1

)
e−rt dr

=
2i
π

∫ ∞

0

e−rt

r1/2(r − 2i)1/2(r1/2(r − 2i)1/2 + r − i)
dr.

From this identity, noting that �(r1/2(r−2i)1/2 +r− i) ≤ −1, it follows
that

(1.24)
∣∣∣∣e−itH

(1)
1 (t) +

2i
πt

∣∣∣∣ ≤ 2
π

∫ ∞

0

e−rt

(2r)1/2
dr =

√
2
πt
, t > 0.

The bounds (1.22), (1.23) and (1.24) are all sharp for large t since
(e.g. [1])

(1.25) H(1)
m (t)=

√
2
πt

exp(i(t−π/4−mπ/2))+O(t−3/2), as t→ ∞,

and it holds similarly [1] that

(1.26) H(1)
m

′
(t)=

√
2
πt

exp(i(t+π/4−mπ/2))+O(t−3/2), as t→ ∞.

It follows from (1.24) that (1.23) is also sharp for small t.

We will find the notation

(1.27) Ψm(t) := e−itH(1)
m (t), t > 0,

useful. Clearly |Ψm(t)| = Mm(t) and it follows from (1.25) and (1.26)
that

(1.28) Ψm(t) =

√
2
πt

exp(−i(π/4 +mπ/2)) +O(t−3/2),

Ψ′
m(t) = O(t−3/2), as t→ ∞.
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For m = 0 and 1 these asymptotics can alternatvely be deduced by
applications of Watson’s lemma to (1.20) and (1.21).

2. Previous results and the case of a circle or sphere. As
noted in the introduction, previous studies of the conditioning and
spectral properties of Ak,η or A′

κ,η have focussed on the special case of
circular and spherical Γ [2, 3, 4, 8, 15, 17, 18, 19]. We will summarise
the results of these studies in this section, and also recent bounds on
‖A−1

k,η‖ for more general geometries [11]. We note that some of the
above papers (e.g. [2, 3]) also make a similar study for the circle/sphere
of the conditioning of the Burton and Miller integral equation for
the acoustic sound-hard (Neumann) scattering problem [9], or for
electromagnetic combined field integral equations (e.g. [18]). In other
related work, Warnick and Chew [31, 32, 33] study the conditioning
of matrix discretisations of the first kind integral equation (1.11) via an
approximate theoretical analysis and numerical experiments, obtaining
simple explicit approximate upper and lower bounds for the condition
number as a function of k and the discretisation step size for several
canonical 2D geometries (a circle, crack and two parallel cracks) [31,
Table 2].

In the case of circular and spherical Γ a very complete theory of
conditioning is possible, due to the fact that Ak,η and A′

k,η operate
diagonally in the basis of trigonometric polynomials (d = 2) or spherical
harmonics (d = 3). The analysis is further simplified by the fact that
D′

k = Dk and so A′
k,η = Ak,η.

Suppose Γ is the unit circle, with parametrisation γ(t) = (cos t, sin t).
With this parametrisationL2(Γ) is isometrically isomorphic to L2[0, 2π].
We can write any ϕ ∈ L2[0, 2π] = L2(Γ) as

ϕ(t) =
1
2π

∑
m∈Z

ϕ̂(m) exp(imt), where

ϕ̂(m) :=
∫ 2π

0

ϕ(t) exp(−imt) dt,

in which case the L2-inner product and norm are given by (ϕ, ψ) =
1
2π

∑
m∈Z

ϕ̂(m)ψ̂(m) and ‖ϕ‖2 = 1
2π

∑
m∈Z

|ϕ̂(m)|2. Then (see [18,
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equation (4.4)] or [15, Lemma 1]), we have the Fourier representation:

(2.1) Ak,ηϕ(t) =
1
2π

∑
m∈Z

λk,η(m)ϕ̂(m) exp(imt) with

λk,η(m) = πH
(1)
|m|(k)

[
ikJ ′

|m|(k) + ηJ|m|(k)
]
.

Note that λk,η(m) is the eigenvalue of Ak,η corresponding to the
eigenfunction exp(±imt). As argued in [18], since the eigenfunctions
exp(imt), m ∈ Z, are a complete orthonormal system in L2[0, 2π] =
L2(Γ), it holds that

(2.2) ‖Ak,η‖ = sup
m∈N0

|λk,η(m)|, ‖Ak,η
−1‖ =

(
inf

m∈N0
|λk,η(m)|

)−1

,

so that

(2.3) cond Ak,η =
supm∈N0

|λk,η(m)|
infm∈N0 |λk,η(m)| .

The problem Ak,ηϕ = g, with g ∈ L2(Γ) = L2[0, 2π], can be recast
in variational form as ak,η(ϕ, ψ) = (g, ψ), where the sesquilinear form
ak,η is given by

(2.4) ak,η(ϕ, ψ) = (Ak,ηϕ, ψ) =
1
2π

∑
m∈Z

λk,η(m)ϕ̂(m)ψ̂(m).

For ϕ ∈ L2(Γ),

(2.5) �(ak,η(ϕ,ϕ)) =
1
2π

∑
m∈Z

�(λk,η(m))|ϕ̂(m)|2 ≥ αk,η‖ϕ‖2,

where

(2.6) αk,η = inf
m∈N0

�(λk,η(m)).

The recent paper [15] obtains rigorous upper bounds on ‖ak,η‖ =
‖Ak,η‖ = supm∈N0

|λk,η(m)| and lower bounds on αk,η. The results
are worked out explicitly for the case η = k (previously proposed as
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optimal for conditioning for the unit circle when k ≥ 1 in e.g. [2, 3,
19]) and are that, for all sufficiently large k,

‖ak,k‖ = ‖Ak,k‖ ≤ Ck1/3,(2.7)
αk,k ≥ 1,(2.8)

with C a constant independent of k. Since ‖A−1
k,η‖ ≤ α−1

k,η, (2.8) implies
that

(2.9) ‖A−1
k,k‖ ≤ 1,

for all sufficiently large k. The bound (2.8) is very technical to prove
whereas the result (2.7) is somewhat easier, requiring only upper
bounds for certain combinations of Bessel functions which are readily
available in [1].

For the case d = 3, when Γ is a sphere of unit radius, a similar
analysis applies, based on the fact that the integral operators on the
sphere are diagonal operators in the space of spherical harmonics. The
corresponding expression for the symbol λk,η is

(2.10) λk,η(m) = ikh(1)
m (kj′m(k) + iηjm(k)) ,

where jm and h
(1)
m are the spherical Bessel and Hankel functions

respectively. This formula can be found, for example, in [17, 18] –
see also [8]. The formulae (2.2) and (2.3) hold also in the 3D case [18],
with λk,η given by (2.10). It is shown in [15] that, for all sufficiently
large k, (2.7) holds also in the 3D case and that, for every C′ < 1,
αk,k ≥ C′ for all sufficiently large k. This implies that

(2.11) ‖A−1
k,k‖ ≤ 1

C′ ,

for all sufficiently large k.

It is important to note that (2.7) was proved previously in the
3D case in the thesis of Giebermann [17]. Further, the conjecture
αk,η ≥ min(1, 2|η|/k) was made in [17], backed up by numerical
experiments and some asymptotic analysis of special cases. Related
results are in [8]. Recently a similar analysis to that in [15, 17], by
Banjai and Sauter [4], has led to a more refined and flexible upper
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bound on Ak,η than (2.7) in the 3D case. They show that, for all
sufficiently large k,

(2.12) ‖Dk‖ ≤ C, ‖Sk‖ ≤ Ck−2/3,

for some constant C independent of k, which implies that

(2.13) ‖Ak,η‖ = ‖I +Dk − iηSk‖ ≤ 1 + ‖Dk‖ + |η| · ‖Sk‖
≤ 1 + C

(
1 + |η|k−2/3

)
.(2.14)

The choice |η| = k yields the same estimate as (2.7), whereas the choice
|η| = k2/3 yields a k−independent bound for ‖Ak,η‖. This is employed
in [4] to obtain improved error estimates for conventional Galerkin
boundary element approximations of the combined potential equation.

We remark that (2.8), which establishes coercivity for the combined
potential operator sesquilinear form ak,k for all sufficiently large k,
moreover with a coercivity constant independent of k, is of more use
for the analysis of numerical methods than the bounds on condition
number implied by (2.7), (2.9), and (2.11). Since bounds on ‖ak,η‖
combined with coercivity ensure the stability and convergence of any
Galerkin scheme, this can be used to prove theorems about the conver-
gence of special Galerkin boundary integral equation methods for high
frequency scattering problems. This was the chief motivation for the
analysis in [15].

Using completely different techniques (Rellich-type identities and
subtle properties of radiating solutions of the Helmholtz equation),
bounds on ‖A−1

k,η‖ have also been obtained recently in [11]. These
apply for a general class of geometries, namely whenever Ω is simply-
connected, piecewise smooth and starlike. For the rest of this section
we assume, without loss of generality, that the origin lies in Ω (0 ∈ Ω).
Then the class of domains studied in [11] are those satisfying the
following assumption (Assumption 3 in [11]):

Assumption 2.1. Γ is Lipschitz and is C2 in a neighbourhood of
almost every x ∈ Γ. Further

δ− := ess inf
x∈Γ

x · ν(x) > 0.
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Note that Assumption 2.1 holds, for example, if Ω is a starlike
polyhedron (and 0 ∈ Ω), with δ− the distance from the origin to the
nearest side of Γ.

Define

R0 := sup
x∈Γ

|x|, δ+ := ess sup
x∈Γ

x ·ν(x), δ∗ := ess sup
x∈Γ

|x−(x ·ν(x))ν(x)|.

Then a main result in [11] is the following:

Theorem 2.2. Suppose that Assumption 2.1 holds and η ∈ R\ {0}.
Then

(2.15) ‖A−1
k,η‖ = ‖A′

k,η
−1‖ ≤ B

where

B :=
1
2
+
[(

δ+
δ−

+
4δ∗2

δ2−

)[
δ+
δ−

(
k2

η2
+1

)
+
d−2
δ−|η|+

δ∗2

δ2−

]
+

(1+2kR0)2

2δ2−η2

]1/2

.

To understand this expression for B, suppose first that Γ is a circle
or sphere, i.e. Γ = {x : |x| = R0}. Then δ− = δ+ = R0 and δ∗ = 0 so

(2.16) B = B0 :=
1
2

+
[
1 +

k2

η2
+
d− 2
R0|η| +

(1 + 2kR0)2

2R2
0η

2

]1/2

.

In the general case, since δ− ≤ δ+ ≤ R0 and 0 ≤ δ∗ ≤ R0, it holds
that B ≥ B0. Note that the expression B blows up if k/|η| → ∞ or if
δ+/δ− → ∞, or if δ−|η| → 0, uniformly with respect to the values of
other variables.

A number of studies of the circle/sphere case have been concerned
with making a choice of η which is optimal in terms of minimising the
condition number (2.3). In particular, based on low frequency asymp-
totics and numerical calculations, the optimal choice of η proposed
in [18] is

(2.17) η = max
(

1
2R0

, k

)
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for the 3D case (and see [2, 3] for some further evidence supporting this
choice). Providing evidence that this is in fact a good choice whenever
Γ is starlike in the sense of Assumption 2.1, Theorem 2.2 shows that if
η is chosen so that

(2.18) max(l1R−1
0 , l2k) ≤ |η| ≤ max(u1R

−1
0 , u2k),

for some positive constants l1, l2, u1, and u2, then, for some constant
C > 0, ‖A−1

k,η‖ = ‖A′
k,η

−1‖ ≤ C for k > 0. For example, choosing

(2.19) η = R−1
0 + k,

which satisfies (2.18) with l1 = l2 = 1 and u1 = u2 = 2, defining
θ := R0/δ−, and noting that δ+/δ− ≤ θ, δ∗/δ− ≤ θ, we see that
Theorem 2.2 implies that

(2.20) ‖A−1
k,η‖ = ‖A′

k,η
−1‖ ≤ B ≤ 1

2
+ θ[2 + (1 + 4θ)(d+ θ)].

Based on computational experience, Bruno and Kunyansky [6, 7]
recommend the choice η = max(6T−1, k/π), where T is the diameter
of the obstacle, which satisfies (2.18), this formula chosen on the basis
of minimising the number of GMRES iterations in an iterative solver.

3. Upper bounds on ‖Sk‖, ‖Dk‖ and ‖Ak,η‖ in the general
Lipschitz case. In this section we derive upper bounds on ‖Ak,η‖
from (1.9) which are explicit in their dependence on the wave number
k and the coupling parameter η, for both the 2D and the 3D case.
To do this, we use the triangle inequality (2.13) together with upper
bounds on the norms ‖Sk‖ and ‖Dk‖. The only geometric restriction
on our scatterer Ω ⊂ R

d for now is our assumption throughout that it
is Lipschitz, by which we mean [24, §3] that Ω is compact and there
exist finite families {Wi}, {Mi}, {fi} and {Ωi} such that

(i) The family {Wi ⊂ R
d} is a finite open cover of the boundary

Γ = ∂Ω;

(ii) Every Mi is a positive real number and every fi : R
d−1 → R is a

Lipschitz continuous function with |fi(ξ) − fi(η)| ≤ Mi‖ξ − η‖ for all
ξ, η ∈ R

d−1;
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(iii) Every Ωi ⊂ R
d can be transformed, by a suitable rotation and

translation, into the hypograph {(ξ, z) ∈ R
d−1 × R : z ≤ fi(ξ)} of the

corresponding fi;

(iv) Ω and Ωi have the same intersection with Wi, for each i.

It is clear that the finite family of values {Mi} can be replaced by one
global value M = maxi Mi. Moreover, for each x ∈ Γ and all i in our
finite index set, let ε(x, i) be the supremum of all ε > 0 for which the
open Euclidean ε-neighbourhood Uε(x) of x is contained in Wi (with
ε(x, i) = 0 if x �∈ Wi). Now put ε(x) = maxi ε(x, i) and note that
x �→ ε(x) is a continuous function over the compact set Γ; so it attains
its minimum ε0 := ε(x0) at some point x0 ∈ Γ, which shows that ε0 > 0
since x0 is covered by (and therefore an interior point of) at least one
Wi. As a consequence, we get that, for each x ∈ Γ, Uε0(x) is contained
in at least one Wi. This shows the following:

Lemma 3.1. For every Lipschitz domain Ω, there are constants
ε > 0 and M > 0 such that, for every x ∈ Γ = ∂Ω, there is a
Lipschitz continuous function fx : R

d−1 → R with Lipschitz constant
M and an appropriate rotation and translation Ωx of the hypograph
{(ξ, z) ∈ R

d−1 × R : z ≤ fx(ξ)} of fx with Ω ∩ Uε(x) = Ωx ∩ Uε(x).

Throughout the paper we will say that Γ = ∂Ω is Lipschitz if Ω is a
Lipschitz domain.

Lemma 3.2. (cf. [30]) Let Ω ⊂ R
d be a Lipschitz domain. Then

the following holds.

a) If d = 2 then

sup
x∈Γ

∫
Γ

1√|x− y| ds(y) < ∞.

b) If d = 3 then

sup
x∈Γ

∫
Γ

1
|x− y| ds(y) < ∞.
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Proof. This follows easily from Lemma 3.1 by splitting the integrals
over Γ into one weakly singular integral over Γ∩Uε(x) and one integral
over the (bounded) rest of Γ.

Our main strategy in computing bounds on ‖Sk‖ and ‖Dk‖ is the
following. Let

(3.1) Tϕ(x) =
∫

Γ

κ(x, y)ϕ(y) ds(y), x ∈ Γ,

denote an integral operator with a suitable kernel function κ(·, ·) on
Γ × Γ. To show that T is bounded and to estimate its operator norm
as a mapping L2(Γ) → L2(Γ), we show that it is bounded both as
a mapping L1(Γ) → L1(Γ) and L∞(Γ) → L∞(Γ) and use the Riesz-
Thorin interpolation theorem (e.g. [23, Theorem 2.b.14]), which says
that

(3.2) ‖T ‖ := ‖T ‖L2→L2 ≤ ‖T ‖1/2
L1→L1 · ‖T ‖1/2

L∞→L∞

holds, where the two norms on the right are explicitly given by
(e.g. [21])

‖T ‖L1→L1 = ess sup
y∈Γ

∫
Γ

|κ(x, y)| ds(x) ,

‖T ‖L∞→L∞ = ess sup
x∈Γ

∫
Γ

|κ(x, y)| ds(y).

In particular, if |κ(x, y)| = |κ(y, x)| for all x, y ∈ Γ, then ‖T ‖L1→L1 and
‖T ‖L∞→L∞ have the same value, and (3.2) simplifies to

(3.3) ‖T ‖ ≤ ‖T ‖L1→L1 = ‖T ‖L∞→L∞ .

More generally, if κ̃(x, y) = κ̃(y, x) and |κ(x, y)| ≤ κ̃(x, y), for all
x, y ∈ Γ, then it follows from (3.2) that

(3.4) ‖T ‖ ≤ ess sup
x∈Γ

∫
Γ

κ̃(x, y) ds(y).

From (1.4) and (1.7) the kernel of the single-layer potential operator
Sk in 2D is κ(x, y) = i

2 H
(1)
0 (k|x− y|). Clearly, κ(x, y) = κ(y, x) for all
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x, y ∈ Γ, and therefore the bound (3.3) applies. From (3.3) and (1.22)
we see that

(3.5) ‖Sk‖ ≤ ess sup
x∈Γ

∫
Γ

∣∣∣∣ i2 H(1)
0 (k |x− y|)

∣∣∣∣ ds(y) ≤ C√
k

where

(3.6) C :=

√
1
2π

ess sup
x∈Γ

∫
Γ

1√|x− y| ds(y) < ∞

by Lemma 3.2.

In 3D, the single-layer potential Sk is an integral operator (3.1) with
kernel

κ(x, y) =
eik|x−y|

2π|x− y| , x, y ∈ Γ.

As in 2D, the kernel function κ(·, ·) is symmetric, and therefore the
norm bound (3.3) applies. Consequently,

‖Sk‖ ≤ ess sup
x∈Γ

∫
Γ

∣∣∣∣ eik|x−y|

2π|x− y|
∣∣∣∣ ds(y)(3.7)

=
1
2π

ess sup
x∈Γ

∫
Γ

ds(y)
|x− y| <∞,

by Lemma 3.2.

We see that we have shown, in (3.5) and (3.7), the following theorem:

Theorem 3.3. If Γ is Lipschitz then there exists a positive constant
c, dependent only on Γ, such that

‖Sk‖ ≤ ck(d−3)/2

for k > 0.

The double-layer potential Dk in 2D is an integral operator (3.1) with
kernel

(3.8) 2
∂Φ(x, y)
∂ν(y)

=
i
2
kH

(1)
1 (k|x− y|) x− y

|x− y| · ν(y) , x, y ∈ Γ.
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Noting that, for t > 0, |eit − 1| = 2| sin(t/2)| ≤ min(t, 2) ≤ √
2t and

using (1.24) we see that, for t > 0,∣∣∣∣H(1)
1 (t) +

2i
πt

∣∣∣∣ ≤
∣∣∣∣H(1)

1 (t) +
2ieit

πt

∣∣∣∣+ 2
πt

|eit − 1|(3.9)

≤
(√

2
π

+
2
√

2
π

)
1√
t
.

Let D0 denote the double-layer potential operator for the Laplace case,
whose kernel is given by taking the limit k → 0 in (3.8), i.e. by replacing
ikH(1)

1 (k|x− y) by 2/(π|x− y|) in (3.8). Since D0 is independent of k
and a bounded operator whenever Ω is Lipschitz (e.g. [25]), and since
‖Dk‖ ≤ ‖Dk − D0‖ + ‖D0‖, it remains to bound ‖Dk − D0‖. The
difference Dk −D0 is an integral operator (3.1) with kernel

κ(x, y) =
(
i

2
kH

(1)
1 (k|x− y|) − 1

π|x − y|
)

x− y

|x− y| · ν(y), x, y ∈ Γ.

Using (3.9) we see that |κ(x, y)| ≤ κ̃(x, y), where

κ̃(x, y) :=

(√
2
π

+
2
√

2
π

)
k1/2

2|x− y|1/2
.

Hence and from (3.4) it follows that ‖Dk −D0‖ ≤ C1k
1/2, with

C1 :=
1
2

(√
2
π

+
2
√

2
π

)
ess sup

x∈Γ

∫
Γ

1√|x− y| ds(y) < ∞

by Lemma 3.2. Thus

(3.10) ‖Dk‖ ≤ ‖Dk −D0‖ + ‖D0‖ ≤ C1

√
k + C2

with C2 := ‖D0‖.
In 3D the double-layer potential Dk is an integral operator (3.1) with

kernel

2
∂Φ(x, y)
∂ν(y)

=
eik|x−y|

2π|x− y|3 (ik|x− y| − 1) (x− y) · ν(y), x, y ∈ Γ.
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As in 2D, the operatorD0 is bounded on L2(Γ) whenever Ω is Lipschitz
(e.g. [25]). So it again remains to bound ‖Dk − D0‖. The difference
Dk −D0 is an integral operator (3.1) with kernel

κ(x, y)=
1

2π|x−y|3
(
eik|x−y|(ik|x−y|−1) + 1

)
(x−y)·ν(y), x, y ∈ Γ.

To bound Dk −D0 the following auxiliary result is useful.

Lemma 3.4. For t ≥ 0, it holds that |eit(it− 1) + 1| ≤ 2t.

Proof. If t ≥ 2 then |eit(it − 1) + 1| ≤ t + 2 ≤ 2t. If 0 < t < 2 put
f(t) = eit(it− 1) and note that

|eit(it−1)+1| = |f(t)−f(0)| =
∣∣∣∣∫ t

0

f ′(s) ds
∣∣∣∣ ≤ ∫ t

0

|−seis| ds =
t2

2
≤ t.

This lemma implies that |κ(x, y)| ≤ k(π|x − y|)−1, for x, y ∈ Γ, so
that, by (3.4),

‖Dk −D0‖ ≤ k

π
ess sup

x∈Γ

∫
Γ

ds(y)
|x− y| <∞,

by Lemma 3.2, and consequently

(3.11) ‖Dk‖ ≤ ‖Dk −D0‖ + ‖D0‖ ≤ C3 k + C4,

where

C3 :=
1
π

ess sup
x∈Γ

∫
Γ

1
|x− y| ds(y) and C4 := ‖D0‖.

We see that we have shown, in (3.10) and (3.11), the following
theorem:

Theorem 3.5. If Γ is Lipschitz then there exist positive constants
c1 and c2, dependent only on Γ, such that

‖Dk‖ ≤ c1k
(d−1)/2 + c2

for k > 0.
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Combining the bounds (3.5), (3.7), (3.10), (3.11), with (2.13), we see
that we have shown the following result for the general Lipschitz case.

Theorem 3.6. If Γ is Lipschitz then there exist positive constants
c1 and c2, dependent only on Γ, such that

(3.12) ‖Ak,η‖ ≤ 1 + c1k
(d−1)/2 + c2|η|k(d−3)/2,

for all k > 0.

We note that in 2D (d = 2), for the case Γ simply-connected and
smooth, this bound was shown previously, for all sufficiently large k,
in [15].

4. Lower bounds. In this section, complementing the results of the
previous section, we derive lower bounds on ‖Sk‖, ‖Dk‖, and ‖Ak,η‖.
We will focus mainly on the 2D case and our technique throughout
will be one of choosing ϕk ∈ L2(Γ) (whose value depends on k) with
the aim of maximising one of ‖Skϕk‖, ‖Dkϕk‖, or ‖Ak,ηϕk‖. Our first
result is something of an exception in that we obtain lower bounds on
both ‖Ak,η‖ and its inverse, in both the 2D and 3D cases. This simple
lemma follows from the fact that Sk and Dk are smoothing operators
on smooth parts of Γ.

Lemma 4.1 In both 2D and 3D, if a part of Γ is C1, then ‖Ak,η‖ ≥ 1,
‖Ak,η

−1‖ ≥ 1.

Proof. Choose x∗ ∈ Γ such that Γ is C1 in a neighbourhood of
x∗. Let t∗ be a unit tangent vector at x∗. For ε > 0 let Γε :=
{x ∈ Γ : |x − x∗| < ε} and let χε denote the characteristic function
of Γε, i.e. χε(x) := 1, x ∈ Γε, := 0 for x ∈ Γ \ Γε. For ε > 0 and
n ∈ N let φn,ε(x) := exp(inx · t∗)χε(x), x ∈ Γ. Then χε ∈ L2(Γ)
so that φn,ε ∈ L2(Γ) for all n ∈ N. Further, if ε is small enough
it is easy to see by the Riemann-Lebesgue lemma that φn,ε ⇀ 0 as
n → ∞, where ⇀ denotes weak convergence in L2(Γ). Moreoever,
for ε sufficiently small, the mappings φ �→ Skχεφ and φ �→ Dkχεφ,
from L2(Γ) to L2(Γ), are compact operators, the first mapping since
the kernel of S is weakly singular, the second due to a result of
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Fabes et al. [16] (that the double-layer potential operator is a compact
operator on the boundary of bounded C1 domains). Since an operator
B is a compact operator on a Hilbert space if and only if weakly
convergent sequences are mapped to strongly convergent sequences, it
follows, if ε is sufficiently small, that ‖Skφn,ε‖ = ‖Skχεφn,ε‖ → 0 and
‖Dkφn,ε‖ = ‖Dkχεφn,ε‖ → 0 as n → ∞, so that ‖Ak,ηφn,ε‖ → ‖φn,ε‖.
Since ‖Ak,η

−1‖−1 ≤ ‖Ak,ηφn,ε‖/‖φn,ε‖ ≤ ‖Ak,η‖, the result follows.

In the next two theorems we construct lower bounds which show that
the upper bounds (3.5) and (3.10) are sharp in their dependence on k, in
that there exist Lipschitz domains for which these bounds are achieved
or arbitrarily closely achieved.

Theorem 4.2. In the 2D case, if Γ contains a straight line section
of length a, then

‖Sk‖ ≥
√

a

πk
+O(k−1)

as k → ∞ and

‖Ak,η‖ ≥ |η|
√

a

πk
− 1 + O(|η|k−1)

as k → ∞, uniformly in η.

Proof. Let Γ̃ be a straight line section of Γ of length a. Without loss
of generality we can choose the axes Ox1x2 of the Cartesian coordinate
system so that Γ̃ = {(x1, 0) : 0 ≤ x1 ≤ a}. Define φ ∈ L2(Γ) by
φ(x) := exp(ikx1), x1 ∈ Γ̃, φ(x) := 0, otherwise. Then, defining
ψ := Skφ and ψ̃(u) := ψ((u/k, 0)), 0 ≤ u ≤ κ := ka, it holds that

‖ψ‖2 ≥
∫ a

0

|ψ((s, 0))|2 ds = k−1

∫ κ

0

|ψ̃(u)|2 du.
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Further, for 0 ≤ u ≤ κ,

|ψ̃(u)| =
1
2

∣∣∣∣∫ a

0

H
(1)
0 (k|u/k − t|)eikt dt

∣∣∣∣
=

1
2k

∣∣∣∣∫ κ

0

H
(1)
0 (|u− v|)eiv dv

∣∣∣∣
=

1
2k

|χ1(u) + χ2(u)| ,

where, for 0 ≤ u ≤ κ,

χ1(u) :=
∫ u

0

H
(1)
0 (u− v)eiv dv, χ2(u) :=

∫ κ

u

H
(1)
0 (v − u)eiv dv.

Recalling that Ψ0 is defined by (1.27), we have that

|χ1(u)| =
∣∣∣∣∫ u

0

Ψ0(u − v) dv
∣∣∣∣ =

∣∣∣∣∫ u

0

Ψ0(v) dv
∣∣∣∣

and

|χ2(u)| =
∣∣∣∣∫ κ

u

Ψ0(v − u)e2iv dv

∣∣∣∣ =
∣∣∣∣∫ κ−u

0

Ψ0(v)e2iv dv

∣∣∣∣ .
Using (1.28), and integrating by parts in the case of χ2, we see that,
as k → ∞,

|χ1(u)| = 2

√
2u
π

+O(1), |χ2(u)| = O(1),

uniformly for 0 ≤ u ≤ κ. Thus, uniformly for 0 ≤ u ≤ κ,

ψ̃(u) = k−1

√
2u
π

+O(k−1)

so that

‖ψ‖ ≥
{∫ a

0

|ψ((s, 0))|2 ds
}1/2

= k−1/2

{∫ κ

0

|ψ̃(u)|2 du
}1/2

=
a√
πk

+O(k−1).
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It follows that

‖Sk‖ ≥ ‖ψ‖
‖φ‖ =

√
a

πk
+O(k−1).

To obtain the lower bound on Ak,η, defining ψ′ := Ak,ηφ, we see that
ψ′(x) = φ(x) − iηψ(x), for x ∈ Γ̃. Thus

‖Ak,η‖ ≥ ‖ψ′‖
‖φ‖ ≥ {∫ a

0 |ψ′((s, 0))|2 ds}1/2

‖φ‖

≥ |η|{∫ a

0
|ψ((s, 0))|2 ds}1/2

‖φ‖ − 1

≥ |η|
√

a

πk
− 1 +O(|η|k−1).

In the case that Γ is a straight line of length a, the lower bound on
‖Sk‖ in the above theorem is particularly close to the upper bound
(3.5)–(3.6) which predicts that

‖Sk‖ ≤
√

1
2πk

sup
0≤s≤a

∫ a

0

1√|s− t| dt =

√
2
πk

∫ a/2

0

dt√
t

= 2
√

a

πk
.

Theorem 4.3. In the 2D case, if c : (0,∞) → (0,∞) is such that
c(k) = o(k1/2) as k → ∞, then there exists a Lipschitz Γ such that
‖Dk‖ ≥ c(k) for all sufficiently large k.

Proof. It is convenient to first construct a function c̃ : (0,∞) →
(0,∞) which is continuously differentiable, satisfies c̃(k) ≥ c(k) for
all sufficiently large k, and is such that g(k) := c̃(k)k−1/2 is strictly
decreasing on (0,∞), with g(k) → ∞ as k → 0 and g(k) → 0, g′(k) → 0
as k → ∞, so that g is a diffeomorphism on (0,∞), whose inverse we
will denote by g−1. Then the proof is completed by showing that
‖Dk‖ ≥ c̃(k) for all sufficiently large k.

To achieve this construction, we first define g1 : [0,∞) → (0,∞) by
g1(k) := 1, 0 < k ≤ 1 and

g1(k) := min
(

1 , sup
s≥k

c(s)
s1/2

)
, k > 1.
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We see that g1 is decreasing and so measurable and that g1(k) ≥
c(k)/k1/2 for all sufficiently large k. Next define g2 : [0,∞) → (0,∞)
by g2(k) := 1, 0 < k ≤ 1 and g2(k) :=

∫ k

k−1
g1(s) ds, k > 1. Clearly

g2 is decreasing and continuous and g2(k) ≥ g1(k), k > 0. Now, define
an := min{k ≥ 0 : g2(k) ≤ 1/n}, n ∈ N, so that 0 = a1 < a2 < · · · ,
and define g3 : [0,∞) → (0,∞) by the requirement that g3(an) = 2/n,
n ∈ N, and that g3 is linear on [an, an+1], for each n. Then g3 is strictly
decreasing, g3(k) → 0 as k → ∞, and, for n ∈ N and k ∈ [an, an+1],

g3(k) ≥ g3(an+1) = 2(n+1)−1 ≥ n−1 = g2(an) ≥ g2(k) ≥ g1(k).

Next, defining g4 : (0,∞) → (0,∞) by

g4(k) :=

{
g3(1)k−1, 0 < k < 1,

g3(k), k > 1,

we see that g4 is strictly decreasing and continuous. Finally, defining
g : (0,∞) → (0,∞) by

g(k) :=
2
k

∫ k

k/2

g4(s) ds, k > 0,

we see that

g(k) ≥ g4(k) ≥ g1(k) ≥ c(k)
k1/2

for all sufficiently large k, so that g(k) → 0 as k → 0 and c̃(k) :=
k1/2g(k) ≥ c(k). Further, g is continuously differentiable with

g′(k) = − 2
k2

∫ k

k/2

g4(s) ds +
2
k
g4(k) − 1

k
g4

(
k

2

)
≤ − 2

k2

k

2
g4(k) +

2
k
g4(k) − 1

k
g4

(
k

2

)
=

1
k

(
g4(k) − g4

(
k

2

))
< 0,

and, for k > 2, g(k) ≤ g4(k/2) = g3(k/2) → 0 as k → ∞, so that also
g′(k) → 0 as k → ∞.
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To proceed with the remainder of the proof, define f̃ ∈ C1(R) by

f̃(s) :=

{
0, s ≤ 0,

[g−1(
√
s)]

−1/2
s, s > 0.

Note that, with this definition, f̃(s) is strictly increasing as s increases
for s > 0. Further, since, as s → 0+, g−1(s) → ∞ and g−1′(s) =
[g′(g−1(s))]−1 → 0, it follows that f̃(s) = o(s) and f̃ ′(s) → 0 as s→ 0+

(so that f̃ ∈ C1(R)). Next choose f ∈ C0,1(R) so that 0 ≤ f(s) ≤ f̃(s),
for s ∈ R, and so that, for some a > 0 and L > 4

√
2π, f(s) = 0 for

s ≥ a and |f ′(s)| = L for all but a finite set of values of s in (0, a).
For example, this can be achieved by choosing a so that 0 ≤ f̃ ′(s) ≤ L
on (0, a), and then constructing the graph of f on the interval (0, a)
by drawing a line with gradient −L up from the point (a, 0) until it
meets the graph of f̃ , then drawing a line of gradient L from this
intersection point to the x-axis at some point (0, a1), then repeating
this construction ad infinitem. Let Γ̃ := {(s, f(s)) : −a ≤ s ≤ a}, and
choose Γ so that it is Lipschitz and contains Γ̃ (e.g. form Γ by joining
the two ends of Γ̃ at (±a, 0) by a smooth arc, tangential to the x-axis
at (±a, 0)).

Having constructed Γ in this way, choose ε so that 0 < ε < a and
define φ ∈ L2(Γ) by φ(x) = exp(−ikx1), if x ∈ Γ̃ and 0 ≤ x1 ≤ ε, = 0,
otherwise, and let ψ = Dkφ. Then for x ∈ Γ̃ with −a ≤ x1 ≤ −a/2 it
follows from (3.8) that

|ψ(x)|

=
k

2

∣∣∣∣∣
∫ ε

0

H
(1)
1 (k

√
(x1 − t)2 + (f(t))2 )

f(t) + (x1 − t)f ′(t)√
(x1 − t)2 + (f(t))2

e−ikt dt

∣∣∣∣∣ .
Now, choosing ε dependent on k so that ε → 0 as k → ∞, we see
using (1.25) that

|ψ(x)| =
Lk

2

√
2
πk

(−x1)−1/2∣∣∣∣∫ ε

0

exp(ik(
√

(x1 − t)2 + (f(t))2 + (x1 − t))) dt
∣∣∣∣

+O(εk−1/2) + o(ε2k1/2)
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as k → ∞, uniformly for −a ≤ x1 ≤ −a/2. Now, for −a ≤ x1 ≤ −a/2,
0 ≤ t ≤ ε,

0 ≤
√

(x1 − t)2 + (f(t))2 + (x1 − t)

=
(f(t))2√

(x1 − t)2 + (f(t))2 − (x1 − t)
≤ (f(t))2

2(t− x1)
≤ (f̃(ε))2

a
.

Choosing ε so that ε = (g(k))2 for all sufficiently large k, we see that
k(f̃(ε))2 = ε2 → 0 as k → ∞. Thus, for every 0 < θ < 1 it holds for
−a ≤ x1 ≤ a/2 and all sufficiently large k that

|ψ(x)| ≥ Lθk1/2ε√
2π(−x1)

≥ Lθ√
2πa

k1/2(g(k))2

so that

‖ψ‖2 ≥ Lθ√
2πa

k1/2(g(k))2
√
a

2
=

Lθ

2
√
π
k1/2(g(k))2.

Since ‖φ‖2 = (1 +L2)1/4ε1/2, it follows that, for all sufficiently large k,

‖Dk‖ ≥ ‖ψ‖2

‖φ‖2
≥ Lθk1/2

2
√
π(1 + L2)1/4

g(k) ≥ L1/2θc̃(k)
2
√
π21/4

.

Choosing θ = 2
√
π21/4/L1/2 which is < 1 since L > 4

√
2π, we see that

we have shown that ‖Dk‖ ≥ c̃(k).

The construction in the proof of Theorem 4.2 can be adapted to
obtain the lower bounds on ‖Sk‖ and ‖Ak,η‖ in the next theorem.

Theorem 4.4. Suppose (in the 2D case) that Γ is locally C2 in
a neighbourhood of some point x∗ on the boundary. Then, for some
constants C > 0 and k0 > 0 it holds for all k ≥ k0 and all η ∈ R that

‖Sk‖ ≥ Ck−2/3 and ‖Ak,η‖ ≥ C|η|k−2/3.

More generally, adopt a local coordinate system OX1X2 with origin
at x∗ and the X1 axis in the tangential direction at x∗, so that, near
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x∗, Γ coincides with the curve {x∗ + t∗X1 + n∗f(X1) : X1 ∈ R}, for
some f ∈ C2(R) with f(0) = f ′(0) = 0; here t∗ and n∗ are the unit
tangent and normal vectors at x∗. Then if, for some N ∈ N, Γ is locally
CN+1 near x∗, i.e. f ∈ CN+1(R), and if also f ′(0) = f (2)(0) = · · · =
f (N)(0) = 0, then there exist C > 0 and k0 > 0 such that

‖Sk‖ ≥ Ck−(N+1)/(2N+1) and ‖Ak,η‖ ≥ C|η|k−(N+1)/(2N+1)

for all k ≥ k0 and all η ∈ R.

Proof. We adopt the local coordinate system OX1X2, choose
β ∈ (0, 1), set α = 1 − β2, and suppose that f ∈ CN+1(R) with
f ′(0) = · · · = f (N)(0) = 0. Then, for all ε sufficiently small, it holds
that Γ± ⊂ Γ, where Γ− := {x∗ + t∗X1 + n∗f(X1) : −ε < X1 < 0} and
Γ+ := {x∗ + t∗X1 + n∗f(X1) : αε < X1 < ε}. Let φ(y) := exp(iky · t∗),
for y ∈ Γ−, := 0, otherwise. Then, for all ε sufficiently small, it holds
for x = x∗ + t∗s+ n∗f(s) ∈ Γ+ that

|Skφ(x)| =
1
2

∣∣∣∣∫ 0

−ε

H
(1)
0

(
k
√

(s− t)2 + (f(s) − f(t))2
)

eiktW (t) dt
∣∣∣∣ ,

where W (t) :=
√

1 + (f ′(t))2. Defining F (z) = 1
2 exp(iπ/4)Ψ0(z),

where Ψ0 is as defined at the end of § 1, we have

|Skφ(x)| =
∣∣∣∣∫ 0

−ε

exp(i[kg(s, t) − π/4])F (k(s− t)w(s, t))W (t) dt
∣∣∣∣ ,

where

w(s, t) :=

√
1 +

(f(s) − f(t))2

(s− t)2

and g(s, t) := (s− t)(w(s, t)−1). Now, by Taylor’s theorem, for |r| ≤ ε,

f ′(r) =
rN

N !
f (N+1)(ξ),

for some ξ between 0 and r, so that, for −ε ≤ t ≤ 0, 0 ≤ s ≤ ε,

|f ′(r)| =
∣∣∣∣∫ s

t

f ′(r) dr
∣∣∣∣ ≤ |s− t|εNMN,ε,
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where

MN,ε := max
−ε≤ξ≤ε

|f (N+1)(ξ)|
N !

.

Thus

0 ≤ (f(s) − f(t))2

(s− t)2
≤ ε2NM2

N,ε,

and so

0 ≤ g(s, t) ≤ 2ε
[√

1 + ε2NM2
N,ε − 1

]
≤ ε2N+1M2

N,ε.

Now choose θ > 0 and

ε =
(

π

2k(MN,0 + θ/N !)2

)1/(2N+1)

.

Then, for all k sufficiently large, it holds that

(4.1) MN,ε ≤MN,0 + θ/N ! ,

so that
0 ≤ kg(s, t) ≤ kε2N+1(MN,ε)2 ≤ π

2
.

Thus, and using (1.28), we see that, uniformly for x ∈ Γ+ (i.e. for
αε ≤ s ≤ ε),

|Skφ(x)| =

√
1
2π

∣∣∣∣∫ 0

−ε

exp(i[kg(s, t) − π/4])
(k(s− t))1/2

W (t) dt
∣∣∣∣+O(ε(kε)−3/2)

≥
√

1
4πkε

∫ 0

−ε

cos(kg(s, t) − π/4) dt+O(ε−1/2k−3/2)

≥
√

1
4πkε

ε cos(π/4) +O(ε−1/2k−3/2)

=
√

ε

8πk
(
1 +O(ε−1k−1)

)
.

Thus, as k → ∞,

(4.2) ‖Skφ‖2 ≥
∫

Γ+

|Sφ|2 ds ≥ (1 − α)ε2

8πk
(1 + o(1))
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while

(4.3) ‖φ‖2 =
∫

Γ−
ds ∼ ε.

So, as k → ∞,

‖Sk‖ ≥ ‖Sφ‖
‖φ‖ ≥

√
(1 − α)ε

8πk
(1 + o(1))

≥ β CN (θ) k−(N+1)/(2N+1) (1 + o(1)),

where

CN (θ) =

√
1
8π

(√
π

2
N !

|f (N+1)(0)| + θ

)1/(2N+1)

.

Since θ > 0 and β ∈ (0, 1) are arbitrary, it follows in the case
f (N+1)(0) = 0 that ‖Sk‖k(N+1)/(2N+1) → ∞ as k → ∞ while, in
the case that f (N+1)(0) �= 0,

(4.4) ‖Sk‖ ≥ CN (0) k−(N+1)/(2N+1) (1 + o(1)).

The above gives the lower bound on ‖Sk‖. To obtain the lower bound
on ‖Ak,η‖ we observe that, for all ε sufficiently small, it holds for
x = x∗ + t∗s+ n∗f(s) ∈ Γ+ that

|Dkφ(x)| ≤ k

2

∫ 0

−ε

|H(1)
1 (k(s− t)w(s, t)) |

(s− t)w(s, t)
|v(s, t)|W (t) dt,

where

|v(s, t)| = |f(s) − f(t) − (s− t)f ′(t)| =
(s− t)2

2
|f ′′(ξ)|,

for some ξ between s and t, so that |ξ| ≤ ε. Applying Taylor’s theorem
again, we see that

|v(s− t)| ≤ (s− t)2

2
NMN,εε

N−1.
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Noting also the bound (1.23), we see that

|Dkφ(x)| ≤ kNMN,εε
N−1

2

∫ 0

−ε

(
1
πk

+

√
s− t

2πk

)
W (t) dt

≤ NMN,εε
N

2π

(
1 +

√
εkπ

)
(1 + o(1)),

as k → ∞, uniformly for x ∈ Γ+. Thus, where ‖·‖+ =
{∫

Γ+
| · |2ds

}1/2

is a shorthand for the L2 norm on Γ+,

‖Dkφ‖+ ≤ βNMN,εε
N+1/2

2π

(
1 +

√
εkπ

)
(1 + o(1)).

From this inequality, (4.2), and (4.3), and recalling that φ = 0 on Γ+,
it follows that

‖Ak,η‖ ≥ ‖Ak,ηφ‖
‖φ‖ ≥ ‖Dkφ− iηSkφ‖+

‖φ‖
≥ |η|β CN (θ) k−(N+1)/(2N+1) (1 + o(1))

− βNMN,εε
N

2π

(
1 +

√
εkπ

)
(1 + o(1))

≥ |η|β CN (θ) k−(N+1)/(2N+1) (1 + o(1)) − βN

2
√

2
(1 + o(1)),

where to get this last inequality we use (4.1) and the definition of ε.
Recalling that θ > 0 and β ∈ (0, 1) are arbitrary, we see that:

(i) if f (N+1)(0) = 0 and |η| � k(N+1)/(2N+1), then ‖Ak,η‖ → ∞ and
‖Ak,η‖k(N+1)/(2N+1)/|η| → ∞ as k → ∞;

(ii) if f (N+1)(0) �= 0 and |η|k−(N+1)/(2N+1) → ∞, then

(4.5) ‖Ak,η‖ ≥ |η|CN (0) k−(N+1)/(2N+1) (1 + o(1)),

as k → ∞;

(iii) if f (N+1)(0) �= 0 and |η| ≈ k(N+1)/(2N+1), then

(4.6) ‖Ak,η‖ ≥ |η|CN (0) k−(N+1)/(2N+1) − N

2
√

2
+ o(1),

as k → ∞.
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We note that the bound (4.4) in fact gives a quantitative lower bound
on ‖Sk‖ in the limit k → ∞. Similarly, (4.5) and (4.6) are quantitative
lower bounds on ‖Ak,η‖. Noting that f ′′(0) is the curvature at x∗, we
have, for example, the following corollary by applying these equations
with N = 1.

Corollary 4.5. Suppose (in the 2D case) that Γ is locally C2

in a neighbourhood of some point x∗ on the boundary and let R be
the radius of curvature at x∗. If R = ∞, then ‖Sk‖k2/3 → ∞; if
also, for some constant C > 0, |η| ≥ Ck2/3, then ‖Ak,η‖ → ∞ and
‖Ak,η‖k2/3/|η| → ∞ as k → ∞. If R <∞, then, as k → ∞,

(4.7) ‖Sk‖ ≥ 1
2

(
R

π

)1/3

(2k)−2/3(1 + o(1)).

If R <∞ and |η|k−2/3 → ∞ as k → ∞, then

‖Ak,η‖ ≥ |η|
2

(
R

π

)1/3

(2k)−2/3(1 + o(1)),

while, if |η| ≈ k2/3, then

‖Ak,η‖ ≥ |η|
2

(
R

π

)1/3

(2k)−2/3 − 1
2
√

2
+ o(1).

Note that the upper bound (2.12) on ‖Sk‖ (which holds for a circle as
well as for a sphere [15]) shows that the lower bound on ‖Sk‖ implied
by Theorem 4.4 in the case of a circle is sharp in its dependence on
k. It follows from (3.5) that the lower bound implied by Theorem
4.4 is sharp in its dependence on k also in the limit N → ∞ when
k−(N+1)/(2N+1) → k−1/2.

The next two theorems obtain lower bounds on ‖Dk‖ by somewhat
similar arguments. The conditions of Theorem 4.6 are satisfied, for
example, if Γ is a polygon. (Choose x1 to be a corner of the polygon
and x2 to be some point on an adjacent side.)
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Theorem 4.6. In the 2D case, suppose x1 and x2 are distinct
points on Γ, that Γ is C1 in one-sided neighbourhoods Γ1 and Γ2 of x1

and x2, and that (x1 − x2) · ν(x) = 0 for x ∈ Γ2 while x1 − x2 is not
parallel to Γ1 at x1. Then, for some constants C > 0 and k0 > 0, it
holds for all k ≥ k0 that ‖Dk‖ ≥ Ck1/4.

Proof. We assume, without loss of generality, that the neighbour-
hoods Γ1 and Γ2 are chosen so that the distance between Γ1 and
Γ2 is strictly positive. Let û := (x2 − x1)/|x2 − x1| and note that
(x − x1)/|x − x1| = û for x ∈ Γ2. Choose ε > 0, define φ ∈ L2(Γ) by
φ(y) = exp(−ikû · (x1 − y)) if y ∈ Γ1 with |x1 − y| < ε, = 0 otherwise,
and let ψ = Dkφ. Let Γ1

ε = {y ∈ Γ1 : |y − x1| < ε}. Then it follows
from (3.8) that

|ψ(x)| =
k

2

∣∣∣∣∣
∫

Γ1
ε

H
(1)
1 (k|x − y|) x− y

|x− y| · ν(y) e−ikû·(x1−y) ds(y)

∣∣∣∣∣ .
Choosing ε dependent on k so that ε→ 0 as k → ∞ we see, using (1.25),
that, uniformly for x ∈ Γ2,

|ψ(x)| =

√
k

2π|x− x1| |û · ν(x1)|

(4.8)

∣∣∣∣∣
∫

Γ1
ε

exp
(
ik[|x− y| − û · (x1 − y)]

)
ds(y)

∣∣∣∣∣
+ o(k−1/2) + o(εk1/2)

as k → ∞. Now, uniformly for x ∈ Γ2,

|x− y| = |x− x1| +
x− x1

|x− x1| · (x
1 − y) + O(ε2)

= |x− x1| + û · (x1 − y) + O(ε2).

Thus, choosing ε = ck−1/2 with c > 0 sufficiently small, we can ensure
that, for all sufficiently large k,

(4.9) k
∣∣∣ |x− y| − û · (x1 − y) − |x− x1|

∣∣∣ ≤ π

4
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for x ∈ Γ2, so that

(4.10)

∣∣∣∣∣
∫

Γ1
ε

exp
(
ik[|x− y| − û · (x1 − y)]

)
ds(y)

∣∣∣∣∣ ≥ ε√
2

=
ck−1/2

√
2

and

(4.11) |ψ(x)| ≥ c|û · ν(x1)|
2
√
π|x− x1| + o(k−1/2)

uniformly for x ∈ Γ2 as k → ∞. Thus, and since

(4.12) ‖φ‖2 =

∣∣∣∣∣
∫

Γ1
ε

ds(y)

∣∣∣∣∣
1/2

= O(k1/4)

we see that, for some constant c > 0,

‖Dk‖ ≥ ‖ψ‖2

‖φ‖2
≥ ck1/4

for all sufficiently large k.

The conditions of the first part of the next theorem are satisfied with
N = 0 by some pair of points x1 and x2 whenever Γ is C1. Thus
the theorem implies that if Γ is C1 then, for some constant C > 0,
‖Dk‖ ≥ C for all sufficiently large k, a result which (cf. (2.12)) appears
to be sharp in the case when Γ is a circle. Note also that, in the limit
N → ∞, the second part of the theorem recovers (almost) Theorem 4.6.

Theorem 4.7. In the 2D case, suppose x1 and x2 are distinct
points on Γ, and that, for some N ∈ N0, Γ is C1 and CN+1 in one-
sided neighbourhoods Γ1 and Γ2 of x1 and x2, respectively, and that
x1 − x2 is not parallel to Γ1 at x1. Without loss of generality, choose
Γ2 so that, for some ε̃ > 0 and f ∈ CN+1(R) with f(0) = 0,

Γ2 = {x2 + tû+ f(t)n̂ : 0 ≤ t ≤ ε̃}
where û = (x2 − x1)/|x1 − x2| and n̂ are orthogonal unit vectors, and
suppose that, for some N ∈ N0,

(4.13) f (0)(0) = f (1)(0) = · · · = f (N)(0) = 0.
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Then there exist C > 0 and k0 > 0 such that

‖Dk‖ ≥ CkN/(4N+4)

for all k > k0.

Proof. Defining φ,Γ1
ε and ψ as in the proof of Theorem 4.6 and,

without loss of generality, choosing ε̃ and ε dependent on k so that
ε̃ → 0 and ε → 0 as k → ∞, we see from (4.8) that, uniformly for
x ∈ Γ2,

|ψ(x)| =

√
k

2π|x2 − x1| |û · ν(x1)|∣∣∣∣∣
∫

Γ1
ε

exp
(
ik[|x− y| − û · (x1 − y)]

)
ds(y)

∣∣∣∣∣
+ o(k−1/2) + o(εk−1/2)

as k → ∞. Further, uniformly for x ∈ Γ2 and y ∈ Γ1
ε ,

|x− y| = |x− x1| +
x− x1

|x− x1| · (x
1 − y) + O(ε2)

as k → ∞. Moreover, on Γ2, x = x2 + tû+ f(t)n̂, for some t ∈ [0, ε̂], so
that, where g(t) := f(t)|x2 − x1|/(|x2 − x1| + t),

x− x1

|x− x1| =
û+ g(t)n̂
|û+ g(t)n̂| =

û+ g(t)n̂√
1 + (g(t))2

.

It follows from (4.13) that f(t) = O(tN+1) as t → 0 so that g(t) =
O(tN+1) as t→ 0 and so

|x− y| = |x− x1| + û · (x1 − y) + O(ε̃N+1ε) + O(ε2)

as k → ∞. Thus, choosing ε = ck−1/2 and ε̃ = c̃k−1/(2N+2) with c > 0
and c̃ > 0 sufficiently small, we can ensure that, for all sufficiently large
k, (4.9) holds for x ∈ Γ2, so that (4.10) and (4.11) hold uniformly for
x ∈ Γ2 as k → ∞. Thus

‖ψ‖2 ≥ c

2
|û · ν(x1)|√
π|x2 − x1| ε̃

1/2
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Figure 1. “Trapping” domain Ωe is the exterior of the domain shown and contains
the square Q := [0, 2a] × [−a, a]

and, noting (4.12), we see that, for some constant C > 0,

‖Dk‖ ≥ ‖ψ‖2

‖φ‖2
≥ Ck1/4k−1/(4N+4) = CkN/(4N+4),

for all sufficiently large k.

5. A lower bound on ‖Ak,η
−1‖ for trapping domains. In this

section we give an example of a Lipschitz domain Ω with boundary
Γ for which ‖A−1

k,η‖ grows as k → ∞, provided |η| ≤ Ck for some
constant C. By Theorem 2.2 (which implies that ‖A−1

k,η‖ = O(1) as
k → ∞ if |η| = k), such a domain cannot be starlike in the sense of
Assumption 2.1, and in particular cannot be convex. The precise rate
of growth and the class of domain for which this growth rate is achieved
are specified in the following theorem.

Theorem 5.1. There exists C > 0 such that, if Γ is Lipschitz
and Ωe contains a square of side length 2a, two parallel sides of which
form part of Γ, and if k = mπ/2a, for some positive integer m, and
η ∈ R \ {0}, then
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(5.1) ‖A−1
k,η‖ ≥ C (ka)9/10

(
1 +

|η|
k

)−1

.

The proof of the theorem is given below. It will depend on the
following useful identity.

Lemma 5.2. Suppose D is a Lipschitz domain in R
2 with boundary

∂D. Then

(5.2) ik
∫

D

exp(ikφ(y))f(y)dy=
∫

∂D

∂φ

∂n
(y)

f(y)
|∇φ(y)|2 exp(ikφ(y))ds(y)

−
∫

D

∇.
[

f(y)
|∇φ(y)|2∇φ(y)

]
exp(ikφ(y))dy,

for all f and φ for which the right-hand side is finite.

Proof. By the divergence theorem,∫
∂D

∂φ

∂n
(y)

f(y)
|∇φ(y)|2 exp(ikφ(y))ds(y)

=
∫

D

∇.
[

f(y)
|∇φ(y)|2∇φ(y) exp(ikφ(y))

]
dy.

The required result follows by applying the product rule to the right-
hand side.

Note that (5.2) appears in [20, §5] for the case when D is a simplex.
There it is the starting point for asymptotic expansions of oscillatory
integrals on multidimensional simplices. For that purpose a certain
“non-resonance condition” on φ is imposed. However this condition is
not required for the simpler case (of one integration by parts) which
we consider here. Note that the requirement that the right-hand side
of (5.2) is finite can typically be attained by requiring f and g to be
sufficiently smooth and ∇φ not to vanish onD (i.e. no stationary points
of the oscillator φ).

Proof of Theorem 5.1. Throughout the proof we shall use the nota-
tion A � B when A/B is bounded by a constant which is independent
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of m and independent of the quantity ε introduced in (5.21) below. In
the case when A/B is also a function of position x on some part of
Γ, we require that the constant be also independent of x. We write
A ∼ B when A � B and B � A. Note that the constraint on k that
2ka = mπ, for some m ∈ N, implies that ka ≥ π/2 > 1.

We shall construct specific w, f ∈ L2(Γ) such that

A′
k,ηw = f,(5.3)

‖w‖ � a1/2k,(5.4)

‖f‖ � a−4/10k1/10 (1 + |η|/k) ,(5.5)

from which the result follows directly, on recalling (1.18).

To construct w and f , without loss of generality we can assume that
the square Q := [0, 2a] × [−a, a] is contained in Ωe and that the sides
{(0, x2) : x2 ∈ [−a, a]} and {(2a, x2) : x2 ∈ [−a, a]} form part of Γ (see
Figure 1). Then consider the function u defined on Ωe by

(5.6) u(y) :=
{

sin(ky1)F (y2/a), x ∈ Q,

0, x ∈ Ωe\Q,

where F (t) = (1 − t2)2 (cf. [11]). Clearly u and ∇u are continuous on
Ωe and u satisfies

Δu+ k2u = g on Ωe,(5.7)
and (since 2ka = mπ) u = 0 on Γ,(5.8)

where

(5.9) g(y) =
{
a−2 sin(ky1)F ′′(y2/a), x ∈ Q,

0, x ∈ Ωe\Q.
Moreover u clearly satisfies the Sommerfeld radiation condition in the
far field.

Another solution of (5.7) which is valid in all of R
2 and also satisfies

the radiation condition is the Newtonian potential

(5.10) uN (x) :=
∫

R2
Φ(x, y)g(y)dy.
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Since uN also satisfies the homogeneous Helmholtz equation in the
bounded domain Ω, we can write the relation between the Dirichlet
and Neumann traces of uN as

(5.11)
[

uN

∂uN/∂ν

]
=

1
2

[
I −Dk Sk

−Hk I +D′
k

] [
uN

∂uN/∂ν

]
,

where Hk is the usual hypersingular operator on Γ. (The matrix on the
right-hand side is usually called the Calderón projector. Note that its
form is slightly different to usual since our operators Dk, Sk, Hk here
contain a multiplicative factor of 2.)

Also, since ũ := u−uN satisfies the homogeneous Helmholtz equation
in Ωe together with the radiation condition, we have, analogously,

(5.12)
[

ũ
∂ũ/∂ν

]
=

1
2

[
I +Dk −Sk

Hk I −D′
k

] [
ũ

∂ũ/∂ν

]
.

Thus, subtracting the first entries of each of (5.11) and (5.12) and
using (5.8), we obtain

(5.13) Sk
∂u

∂ν
= 2uN .

Similarly, subtracting the second entries of (5.11) and (5.12) yields

(5.14) (I +D′
k)
∂u

∂ν
= 2

∂uN

∂ν
.

Hence, combining (5.13) (multiplied by iη) with (5.14) we obtain (5.3)
with

(5.15) w :=
∂u

∂ν
and f := 2

(
∂uN

∂ν
− iηuN

)
.

Now, to obtain (5.4), an easy calculation (recalling 2ka = mπ), shows

(5.16) ‖w‖2 = 2
∫ a

−a

k2|F (y2/a)|2dy2 � ak2.



CONDITION NUMBER ESTIMATES 267

To complete the proof we must prove (5.5) where f is given by (5.15).
We begin this by estimating ‖uN‖. To do this we combine (5.10)
and (5.9) to obtain, for x ∈ Γ,

(5.17)
uN(x) =

2∑
j=1

uN
j (x), where

uN
j (x) =

∫
Q

exp(ikφj(x, y))fj(k, x, y)dy,

with φj(x, y) := |x− y| + (−1)jy1,

fj(k, x, y) := (−1)j a
−2

2i
F ′′(y2/a)Ψ0(k|x− y|),

and Ψ0 defined by (1.27). We shall prove the required estimate for the
oscillatory integral uN

1 (the case uN
2 is analogous). The phase function

for uN
1 satisfies

(5.18) ∇φ1(x, y) =
y − x

|y − x| − (1, 0)T .

(Here and in the remainder of the proof, all differentiation is performed
with respect to y.) To estimate uN

1 (x) for x ∈ Γ, we distinguish three
cases:

(5.19)
(1) x1 = 0 and x2 ∈ [−a, a],
(2) x1 < 0 and x2 ∈ [−a, a],
(3) x1 ≥ 2a or x2 �∈ [−a, a].

⎫⎪⎬⎪⎭
It turns out that the dominant case is (1). We analyse this in detail
first and then explain briefly why cases (2) and (3) are less significant.
In case (1), φ1 has a line of stationary points {(s, x2) : s ∈ [0, 2a]} in
Q, with x at its left hand end (see Figure 2). Then, for any ε satisfying

(5.20) k−1 ≤ ε ≤ a ,

we divide the square Q into a strip enclosing the stationary line,

(5.21) Qx,ε := {(s, x2 + t) : s ∈ [0, 2a] , t ∈ [−ε, ε]} ∩Q,
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and the remainder Q̃x,ε := Q\Qx,ε. (Note that Q̃x,ε consists of one
rectangle if x2 < −a + ε or x2 > a − ε and two rectangles otherwise.)
Then

uN
1 (x) =

∫
Qx,ε

exp(ikφ1(x, y))f1(k, x, y)dy(5.22)

+
∫

Q̃x,ε

exp(ikφ1(x, y))f1(k, x, y)dy

=: uN
1,ε(x) + ũN

1,ε(x).
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y12a

−a

a

x
0

Figure 2. The square Q and the strip Qx,ε where x = (0, x2) ∈ Γ. The shaded area
is a typical rectangle R.

Using the fact that M0 satisfies the bound (1.22) we estimate uN
1,ε(x)

as follows:
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(5.23) |uN
1,ε(x)| ≤ a−2

∫
Qx,ε

M0(k|x − y|) |F ′′(y2/a)| dy

� a−2k−1/2

∫
Qx,ε

|x− y|−1/2dy

= a−2k−1/2

∫ 2a

0

∫ ε

−ε

(s2 + t2)−1/4 ds dt

≤ a−2k−1/2ε

∫ 2a

0

t−1/2dt � a−3/2k−1/2ε.

Turning to ũN
1,ε(x), without loss of generality consider the case when

Q̃x,ε consists of two rectangles and let R be the rectangle with y2 > x2.
(That is the shaded rectangle in Figure 2.) Then, by Lemma 5.2,

(5.24) ik
∫

R

exp(ikφ1(x, y))f1(k, x, y)dy

=
∫

∂R

∂φ1(x, y)
∂n(y)

f1(k, x, y)
|∇φ1(x, y)|2 exp(ikφ1(x, y))ds(y)

−
∫

R

f1(k, x, y)
1

|∇φ1(x, y)|2 Δφ1(x, y) exp(ikφ1(x, y))dy

−
∫

R

f1(k, x, y)∇
(

1
|∇φ1(x, y)|2

)
.∇φ1(x, y) exp(ikφ1(x, y))dy

−
∫

R

∇f1(k, x, y).∇φ1(x, y)
|∇φ1(x, y)|2 exp(ikφ1(x, y))dy

=: T 1 + T 2 + T 3 + T 4.

We estimate each term on the right-hand side of (5.24). First, by
definition of Qx,ε, |∇φ1(x, y)| � a−1ε, for y ∈ Qx,ε, and so, using the
bound (1.22),

|T 1| � a−1ε−1

∫
∂R

M0(k|x− y|)ds(y)(5.25)

� a−1ε−1k−1/2

∫
∂R

|y − x|−1/2ds(y)

� a−1/2k−1/2ε−1.
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Next,

(5.26) |T 4| � aε−1

∫
R

|∇f1(k, x, y)|dy

� a−1ε−1

{
a−1

∫
R

|F ′′′(y2/a)| |Ψ0(k|x− y|)|dy

+
∫

R

|F ′′(y2/a)| |∇ (Ψ0(k|x− y|)) |dy
}

� a−1ε−1

{
a−1

∫
R

M0(k|x− y|)dy

+ k

∫
R

|Ψ′
0(k|x− y|)|dy

}
� a−1ε−1

{
a−1k−1/2

∫
R

|x− y|−1/2dy

+ k−1/2

∫
R

|x− y|−3/2dy

}
,

where to obtain this last line we use (1.22) and (1.28) and that
k|x − y| ≥ kε ≥ 1 for y ∈ R. Now, taking polar coordinates about
x and using (1.22), we obtain

(5.27)
∫

R

|x− y|−1/2 dy ≤
∫ π/2

0

∫ 2
√

2a

ε

r−1/2 r dr dθ � a3/2.

Similarly,

(5.28)
∫

R

|x− y|−3/2 dy � a1/2.

Combining the last two results with (5.26) we obtain for T 4 the same
estimate as for T 1:

(5.29) |T 4| � a−1/2k−1/2ε−1.

The terms T 2 and T 3 need slightly more careful estimation. Recalling
that we are dealing with case (1), so that x = (0, x2), and using
formula (5.18), the following formulae are easily verified:

(5.30) |∇φ1(x, y)|2 =
2

|y − x| (|y − x| − y1) ,
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and

(5.31) ∇
(

1
|∇φ1(x, y)|2

)
.∇φ1(x, y) = − 1

2|y − x|
(

y2 − x2

|y − x| − y1

)2

.

Now consider the term T 2. Note first that it follows easily from (5.18)
that Δφ1(x, y) = |y − x|−1 and hence, using (5.30) and (1.22), we have

|T 2| �
∫

R

|f1(k, x, y)| 1
(|y − x| − y1)

dy(5.32)

≤ a−2

∫
R

M0(k|x− y|) 1
(|y − x| − y1)

dy

� a−2k−1/2ε−1/2

∫
R

1
(|y − x| − y1)

dy.

Then, rewriting (5.32) using polar coordinates centred at x = (0, x2),
we obtain

(5.33) |T 2| � a−2k−1/2ε−1/2

∫ π/2

sin−1(ε/2a)

∫ 2
√

2a

0

1
(r − r cos θ)

r dr dθ

� a−1k−1/2ε−1/2

∫ π/2

sin−1(ε/2a)

1
(1 − cos θ)

dθ

� a−1k−1/2ε−1/2

∫ π/2

sin−1(ε/2a)

θ−2dθ � k−1/2ε−3/2 .

Finally, to estimate T 3, we employ (5.31) and proceed as in (5.32)–
(5.33) to obtain

(5.34) |T 3|

� a−2k−1/2ε−1/2

∫
R

1
|y − x|

(
y2 − x2

|y − x| − y1

)2

dy

= a−2k−1/2ε−1/2

∫ π/2

sin−1(ε/2a)

∫ 2
√

2a

0

1
r

(
r sin θ

r − r cos θ

)2

r dr dθ

� a−1k−1/2ε−1/2

∫ π/2

sin−1(ε/2a)

θ−2dθ ∼ k−1/2ε−3/2.
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Combining the estimates (5.25), (5.29), (5.33), (5.34) with (5.24) and
recalling that R is a typical rectangle in Q̃x,ε, we obtain

(5.35) |ũN
1,ε(x)| � k−3/2ε−3/2.

Note also that the estimates in (5.25), (5.29) are smaller than those in
(5.33), (5.34) but we have to use the worst of the four to get (5.35).

Now, choosing ε to equilibriate the estimates (5.35) and (5.23), we
arrive at the choice ε = a3/5k−2/5 (which also satisfies the require-
ment (5.20)) and yields the final estimate uniformly for x satisfying
case (1):

(5.36) |uN
1 (x)| � a−9/10k−9/10.

It is not difficult to check that the same estimate holds also in
case (2). In this case φ1 has the same line of stationary points as
in case (1) and all the same manipulations hold to obtain the same
bound uniformly for x satisfying case (2). In case (3) the phase of
the integrand of uN

1 has no stationary points. A similar argument can
be applied if x is within a distance ε of R. If x is further away then
Lemma 5.2 can be applied on all of Q yielding again the same estimate,
uniformly for x satisfying case (3). Therefore, since uN

2 is estimated
using exactly the same argument, we obtain

(5.37) ‖uN‖ � a−4/10k−9/10.

We now consider ∂uN/∂ν, for which the argument is very similar.
First, mimicking (5.17), we write (∂uN/∂ν)(x) =

∑2
j=1 u

N
ν,j(x), where

(5.38) uN
ν,j(x) =

∫
Q

exp(ikφj(x, y))fν,j(k, x, y)dy, x ∈ Γ,

with φj defined as above,

fν,j(k, x, y) := (−1)j(a−2k/2i)F ′′(y2/a)
(y − x).ν(x)

|y − x| Ψ1(k|x− y|),

and Ψ1 defined by (1.27). Again without loss of generality it is sufficient
to estimate ‖uN

ν,1‖. The three cases (5.19) have again to be considered,
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but we discuss only case (1). As before, define the decomposition
uN

ν,1 = uN
ν,1,ε + ũN

ν,1,ε by simply replacing f1 by fν,1 in (5.22). Let Uε(x)
denote the ball centred at x of radius ε. Recalling the bound (1.23)
and that kε ≥ 1 by (5.20), a variation on the argument in (5.23) yields

(5.39) |uN
ν,1,ε(x)| � a−2k

∫
Qε

M1(k|x− y|)dy

= a−2k

{∫
U2ε(x)

(k|x − y|)−1 dy +
∫

Qε

(k|x− y|)−1/2 dy

}
� a−2ε+ a−3/2εk1/2 � a−3/2k1/2ε,

where in the last step we used that kε ≥ 1.

To estimate ũν,1,ε, we replace f1 by fν,1 in (5.24) and, calling the
corresponding terms (T 1)ν, . . . , (T 4)ν, we estimate each of these terms
in turn. Firstly, using (1.23) and that k|x− y| ≥ kε ≥ 1 for y ∈ R,

(5.40) |(T 1)ν | � a−1kε−1

∫
∂R

M1(k|y − x|)ds(y) � a−1/2k1/2ε−1 .

Next, analogously to (5.26), and using (1.23) and (1.28), we have

(5.41) |(T 4)ν | � aε−1

∫
R

|∇fν,1(k, x, y)|dy

� a−1kε−1

{
a−1

∫
R

M1(k|x− y|)dy + k

∫
R

|Ψ′
1(k|x− y|)|dy

}
� a−1kε−1

{
a−1[a3/2k−1/2] + k[a1/2k−3/2]

}
∼ a−1/2k1/2ε−1.

Finally the estimates for (T2)ν and (T3)ν are easily achieved from the
previous arguments. For (T2)ν , follow (5.32) and (5.33) to obtain

(5.42) |(T 2)ν | � a−2k

∫
R

|M1(k|x− y|)| 1
(|y − x| − y1)

dy

� a−2k1/2ε−1/2

∫
R

1
(|y − x| − y1)

dy � k1/2ε−3/2.

Similarly |(T 3)ν| � k1/2ε−3/2 and gathering all these estimates we
obtain

|ũN
ν,1,ε(x)| � k−1/2ε−3/2 .
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Comparing this with (5.39), we see that again the choice ε = a3/5k−2/5

equilibriates the estimates, yielding |uN
ν,1(x)| � a−9/10k1/10, uniformly

for x ∈ Γ, and, consequently,

(5.43) ‖∂uN/∂ν‖ � a−4/10k1/10 .

Combining (5.43) with (5.37) we obtain (5.5) and the proof is complete.

6. Bounds on cond Ak,η and concluding remarks. In
this section we summarise, in a convenient form for the reader, the
theoretical results obtained in the previous sections, and explore their
implications in terms of upper and lower bounds on the (identical)
condition numbers of Ak,η and A′

k,η. We remind the reader first
of all that (1.17) and (1.18) hold so that cond A′

k,η = cond Ak,η ≥
‖Ak,η Ak,η

−1‖ = 1.

In the case of a general Lipschitz domain we have only the
bound (3.12). For a piecewise C1 Lipschitz domain we have also
that Lemma 4.1 holds so that

(6.1) 1 ≤ ‖Ak,η‖ � 1 + k(d−1)/2 + |η|k(d−3)/2.

(In this section we write A � B if, for some constant c > 0 dependent
only on Ω, A ≤ cB for all k > 0, and write A ∼ B if A � B and
B � A.) In the case when Γ is Lipschitz, piecewise C2 and
starlike, satisfying Assumption 2.1, we have also, from Lemma 4.1
and Theorem 2.2, that

(6.2) 1 ≤ ‖Ak,η
−1‖ � 1 +

1 + k

|η| .

Combining this equation with (6.1), we see that

(6.3) 1 ≤ cond Ak,η �
(
1 + k(d−1)/2 + |η|k(d−3)/2

)(
1 +

1 + k

|η|
)

� 1 + k(d−1)/2,

if |η| ∼ 1+k (e.g. if one chooses specifically η given by (2.17) or (2.19)).
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The only other result we have for the 3D case (d = 3) is the
bound (2.14) for the case of a sphere. Combining that bound with (6.1)
and (6.2), we have for the sphere that

(6.4) 1 ≤ cond Ak,η �
(
1 + |η|(1 + k)−2/3

)(
1 +

1 + k

|η|
)

� 1 + k1/3,

if |η| ∼ 1 + kp, for some p ∈ [ 23 , 1].

We turn now specifically to the 2D case, for which we have addition-
ally the many lower bounds of §4. We note moreoever that, adapting
the arguments of §3 which show that ‖Dk − D0‖ → 0 as k → 0, we
can show that Sk depends continuously in norm on k for k > 0 and
that, thanks to the asymptotic behaviour of H(1)

0 for small argument,
‖Sk‖ → ∞ logarithmically as k → 0 (see [12] for more detail). Since
also Sk �= 0 for k > 0, it follows that ‖Sk‖ is bounded below by a
positive constant on (0, k0) for every k0 > 0 while ‖Dk‖ is bounded
above by (3.10). These observations can be put together with the
lower bounds for k → ∞ in §4 to deduce lower bounds which hold for
all k > 0. Specifically, for the circle it follows from these observa-
tions, (2.7), (3.5), (6.2), and Corollary 4.5, that, for η = k,

(6.5) 1 + k1/3 � ‖Ak,η‖ � 1 + k−1/2 + k1/3,

that ‖A−1
k,η‖ = 1 for all sufficiently large k, and that

(6.6) 1 + k1/3 � cond Ak,η � 1 + k−1/2 + k1/3.

For any 2D Lipschitz piecewise C2 boundary2 , applying (6.1)
and Corollary 4.5 we have

(6.7) 1 + |η|(1 + k)−2/3 � ‖Ak,η‖ � 1 + k1/2 + |η|k−1/2,

so that, for any starlike 2D Lipschitz piecewise C2 boundary
for which (6.2) also holds,

(6.8) 1 + |η|(1 + k)−2/3 � cond Ak,η

�
(
1 + k1/2 + |η|k−1/2

)(
1 +

1 + k

|η|
)
.

A 2D Lipschitz piecewise C2 boundary is precisely a boundary Γ consisting of
a finite number of C2 arcs, with the corner angles where the arcs connect in the
range (0, 2π), so excluding cusps.



276 S. CHANDLER-WILDE, I. GRAHAM, S. LANGDON AND M. LINDNER

If Γ is not strictly convex, i.e. has zero curvature at some point on
Γ, then the sharper lower bounds of Theorem 4.2 or 4.4 apply. For
example, if Γ is a polygon, then, combining Theorem 4.2 with (6.1),
we see that

(6.9) 1 + |η|(1 + k)−1/2 � ‖Ak,η‖ � 1 + k1/2 + |η|k−1/2.

Thus, for a starlike polygon,

(6.10) 1 + |η|(1 + k)−1/2 � cond Ak,η

�
(
1 + k1/2 + |η|k−1/2

)(
1 +

1 + k

|η|
)
.

In particular, for |η| ∼ 1 + k,

(6.11) 1 + k1/2 � cond Ak,η � 1 + k−1/2 + k1/2.

We finish this section by bounding the condition number for trapping
obstacles that satisfy the conditions of Theorem 5.1 (see Figure 1). For
such trapping obstacles, which contain two straight parallel sides,
distance a apart, separated by the medium of propagation we have,
from Theorem 4.2 and (6.1), that

(6.12) 1 + |η|(1 + k)−1/2 � ‖Ak,η‖ � 1 + k1/2 + |η|k−1/2.

Thus, applying Theorem 5.1, if k = mπ/(2a) for some m ∈ N, then

(6.13) cond Ak,η � (1 + |η|(1 + k)−1/2)k9/10

(
1 +

|η|
k

)−1

.

In particular, if |η| ∼ 1 + kp, for some p ≥ 0, then this bound implies
that

(6.14) cond Ak,η � 1 + kq,

with q = 9/10 for 0 ≤ p ≤ 1/2, q = p + 4/10, for 1/2 ≤ p ≤ 1, and
q = 14/10 for p ≥ 1, including for the usual choice η ∼ 1 + k.

In conclusion, we note that our results show that, asymptotically as
k → ∞, the conditioning of Ak,η depends hugely on the geometry of
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Γ. In particular, for the usual choice η ∼ 1 + k, recommended e.g. in
[6, 18], we have shown that cond Ak,η ∼ k1/3 as k → ∞ for the case
of a circle, cond Ak,η ∼ k1/2 for the case of a starlike polygon, while
cond Ak,η � k14/10, for all sufficiently large k satisfying the condition
k = mπ/(2a) for some m ∈ N, when Γ is the boundary of a trapping
obstacle satisfying the conditions of Theorem 5.1.

In [12] we investigate these trends in more detail, and show the same
effects on the discrete level, when the boundary integral equations are
discretised by a Galerkin boundary element method, applying a mixture
of theoretical analysis and numerical experiment.
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28. O. I. Panič, On the question of the solvability of the exterior boundary-value
problems for the wave eqaution and Maxwell’s equations, Usp. Mat. Nauk, 20A
(1965), 221–226.

29. G. Verchota, Layer potentials and regularity for the Dirichlet problem for
Laplace’s equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572–611.

30. N. Valdivia, Uniqueness in inverse obstacle scattering with conductive
boundary conditions, Appl. Anal., 83 (2004), 825–851.

31. K. F. Warnick and W. C. Chew, Error analysis of the moment method, IEEE
Ant. Prop. Mag. 46 (2004), 38–53.



CONDITION NUMBER ESTIMATES 279

32. , On the spectrum of the electric field integral equation and the
convergence of the moment method, Int. J. Numer. Meth. Engng., 51 (2001), 31–56.

33. , Convergence of moment-method solutions of the electric field integral
equation for a 2-D open cavity, Microwave Optical Tech. Letters, 23 (1999), 212–
218.

34. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge
University Press, 2nd Ed., (1944).

Department of Mathematics, University of Reading, Whiteknights, PO

Box 220, Berkshire, RG6 6AX, UK.

Email address: S.N.Chandler-Wilde@reading.ac.uk

Department of Mathematical Sciences, University of Bath, Bath BA2

7AY, UK.

Email address: I.G.Graham@bath.ac.uk

Department of Mathematics, University of Reading, Whiteknights, PO

Box 220, Berkshire, RG6 6AX, UK.

Email address: S.Langdon@reading.ac.uk

TU Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany.

Email address: marko.lindner@mathematik.tu-chemnitz.de


