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In this paper we propose and analyse a new enhanced version of the panel-clustering algorithm
for discrete boundary integral equations on polyhedral surfaces in 3D, which is designed to
perform efficiently even when the meshes contain the highly stretched elements needed for efficient
discretisation when the solution contains edge singularities. The key features of our algorithm
are: (i) the employment of partial analytic integration in the direction of stretching, yielding a
new kernel function on a one dimensional manifold where the influence of the high aspect ratios
in the stretched elements is removed and (ii) the introduction of a generalised admissibility
condition with respect to the partially integrated kernel which ensures that certain stretched
clusters which are inadmissible in the classical sense now become admissible. In the context of
a model problem, we prove that our algorithm yields an accurate (up to discretisation error)
matrix-vector multiplication which requires O(N logκN) operations, where N is the number of
degrees of freedom and κ is small and independent of the aspect ratio of the elements. We also
show that the classical admissibility condition leads to a sub-optimal clustering algorithm for
these problems. A numerical experiment shows that the theoretical estimates can be realised
in practice. The generalised admissibility condition can be viewed as a simple addition to the
classical method which may be useful in general when stretched meshes are present.

1 Introduction

The boundary integral method is a well-known method for solving several important classes of boundary-
value problems. Since boundary integral operators are non-local, their straightforward discretisation via the
boundary element method leads to dense linear systems, which, for large applications, have to be solved
iteratively. The storage requirement and the cost of a matrix-vector multiplication scale quadratically with
the number of unknowns N and this is a major bottleneck in the solution process.

The panel-clustering algorithm ([18, 14, 15, 20, 16, 24, 25]) employs separable polynomial expansions of
the kernel function in the far field (i.e. for matrix entries corresponding to well-separated pairs of freedoms)
to obtain an approximate matrix for which the complexity of storage and matrix-vector multiplication is
O(N logκN), for moderate κ, but for which the asymptotic accuracy of the resulting numerical solution (as
the mesh is refined) remains unchanged. The fast multipole method is closely related [23], [19].

To perform a thorough analysis of the panel-clustering algorithm we are required to address both the
stability/consistency of the approximation and the complexity of the resulting matrix-vector multiplication.
For quasi-uniform meshes this analysis can be found, e.g., in [18], [16], [26]. For more general classes
of meshes, including certain degenerate meshes, a stability/consistency analysis was recently given in [9].
However the complexity analysis has so far not been extended beyond the quasi-uniform case.

In this paper we focus on a class of degenerate meshes which are typically used in connection with the
h-version of the Galerkin boundary element method on domains with non-smooth boundaries. Because the
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solution being sought features anisotropic edge singularities, it can be shown (cf. [21, 6]) that meshes which
are algebraically graded towards edges and corners allow a much better approximation of the solution than
quasi-uniform meshes. These graded meshes are neither quasi-uniform nor shape-regular: Elements which
are near edges but away from corners have an aspect ratio which tends to infinity as N → ∞. Unfortunately,
for such meshes, the standard panel-clustering algorithm will have sub-optimal complexity, due to the fact
that the near-field becomes too large in the vicinity of the stretched elements. (This is explained in §§5,7
below and was also the subject of previous unpublished work [8]).

In this paper we present a new version of the panel-clustering method which does not suffer from this
defect. In order for the fundamental idea to be made clear, we will present the algorithm for general operators
of order > 1/2 on polyhedra, discretised with piecewise constant elements. To keep the paper at reasonable
length, the proofs will be limited to the case of the single layer potential for the Laplace operator. However,
we also indicate throughout how the method and, in principle, the proofs can be extended to more general
situations which are encountered in practical applications. The results of this paper complement those
in [10], where the conditioning of Galerkin matrices on anisotropic meshes is analysed, along with simple
preconditioners which remove ill-conditioning due to the anisotropy.

The paper is organised as follows. In Section 2, we briefly review the boundary integral equations, the
graded meshes and corresponding boundary element spaces having optimal approximation property. In
Section 3, we introduce the new (generalised) version of the panel-clustering method for stretched meshes
and the algorithms for its efficient realisation. The key idea is the introduction of a generalised admissibility
condition which is based on the partial analytic integration of the kernel function on stretched elements
in the direction parallel to the nearest edge. Here we make the (natural) assumption that the degenerate
elements are parallel to the edge in question. Section 4 is devoted to the error analysis of the generalised
panel-clustering approximation. Specifically we show that the approximate system yields a solution which
satisfies the same asymptotic error estimate as the true Galerkin solution. In Section 5, we will show that
the complexity of the new panel-clustering algorithm is of order N logκN for moderate κ. We will also show
that the standard panel-clustering method for the stretched meshes considered here has complexity N1+δ,
where δ ∈ (0, 1/2) and depends on the grading of the mesh. (In an extreme case δ approaches 1/2.) In
§6, explicit representations are presented for the partially integrated kernel function which is employed in
§3, along with the properties of the partially integrated kernel which are required for the proofs in §§4, 5.
Numerical experiments are reported in §7.

2 Boundary Elements on Anisotropically Refined Meshes

Let Γ be the surface of a closed bounded Lipschitz polyhedron in R
3. Linear elliptic boundary-value problems

with constant coefficients in the domain interior or exterior to Γ may be reformulated as boundary integral
equations

(λI + K)u(x) := λu(x) +

∫

Γ
k(x,y)u(y)dsy = f(x) , x ∈ Γ , (2.1)

where λ ∈ R, k is a known kernel function and f is a known right-hand side. We will assume (as is true in
very many cases) that for some µ ∈ R, the corresponding weak form:

Find u ∈ Hµ(Γ) such that a(u, v) := ((λI + K)u, v) = (f, v) for all v ∈ Hµ(Γ) (2.2)

constitutes a well-posed variational principle in the Sobolev space Hµ(Γ). (In some cases the energy space
must be chosen as a suitable closed subspace of Hµ(Γ).) The continuous extension of the L2 (Γ)-scalar
product (·, ·) to the duality pairing H−µ (Γ) ×Hµ (Γ) in (2.2) is again denoted by (·, ·). Typical examples
include all the standard boundary integral formulations of Laplace’s equation and the Helmholtz equation
(see, e.g. [17, 26]). While the algorithm which we discuss in this paper is applicable to general boundary
integral equations we will present proofs for the following particular case:
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Figure 1: The face Γ (middle) is partitioned into segments with convex corners (left), concave corners (right)
and the segments parallel to γ in between. Grey panels are shape-regular.

Example 2.1 The Laplace single layer integral equation is of the form (2.1) with λ = 0 and k(x,y) =
1/ (4π ‖x − y‖). The formulation (2.2) holds with µ = −1/2 and the corresponding bilinear form is symmet-
ric, bounded and coercive in H−1/2(Γ).

To approximate (2.2) we assume that we have a mesh T of elements (here called panels) τ ∈ T . Each
panel may be a triangle or quadrilateral and is assumed to be the image of a unit triangle or quadrilateral
under an affine map. On this mesh we can introduce a space of piecewise polynomial functions S ⊂ Hµ(Γ).
The Galerkin method then seeks an approximate solution U ∈ S by solving

a (U, V ) = (f, V ) for all V ∈ S. (2.3)

Suppose u is the vector of coefficients of U with respect to a basis {φi : i ∈ I}, for some index set I with
cardinality N . Then we have to solve the N ×N linear system:

(λM +K)u = f , (2.4)

with Mi,j = (φi, φj), Ki,j = (Kφj , φi) and fi = (f, φi). The panel-clustering algorithm is used to approximate
the dense matrix K. To be more precise, the panel-clustering is best thought of, not as an approximation of
the matrix entries of K but as a data-sparse representation of the associated linear operator K : R

I → R
I .

It is well-known (cf. [21, 26]) that the exact solution u exhibits a characteristic singular behaviour in the
normal direction near edges of Γ and in the radial direction near corners of Γ. Moreover, u is smooth in
the interior of the plane faces of Γ and also in the tangential direction relative to the edges. This suggests
that it may be advantageous to employ graded meshes whose elements have the following properties (as the
meshes are refined): (i) they become increasingly small in the normal direction near the edges but are larger
in the tangential direction; (ii) they become (uniformly) small when lying close to corners and, (iii) they are
quasi-uniform when bounded away from the corners and edges.

We briefly describe the construction of suitable meshes. In general we are considering polyhedral surfaces,
but without loss of generality we can explain the meshing algorithm by restricting to the case when Γ is a
single planar polygon, with polygonal boundary γ = ∂Γ. For sufficiently small δ > 0 we insert a polygon γ‖

into Γ which is parallel to γ and has distance δ from γ (cf. Figure 1 (middle)) 1. The portion of Γ between
γ and γ‖ we call “the δ-strip”. We assume that δ is sufficiently small so that, for any vertex P in γ there
exists a corresponding vertex P ‖ in γ‖.

1To be more precise, for each segment γi in γ there is a corresponding segment γ
‖
i in γ‖ so that the infinite lines through γi

and γ
‖
i are parallel and are a distance δ apart.
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If P is a convex vertex of Γ we extend both segments of γ‖ which meet at P ‖ so that they hit γ.

If P is a concave vertex of Γ we insert two lines into the δ-strip which are orthogonal to γ and a distance
δ along γ from P .

If δ is chosen sufficiently small, this procedure subdivides Γ into (i) rhombus-shaped regions of the δ-strip
near convex corners, (ii) L-shaped regions of the δ-strip near concave corners, (iii) trapezia-shaped regions
near edges but away from corners and (iv) a polygonal inner region bounded by γ‖.

The mesh on Γ depends on two parameters: N ∈ N (the number of elements in Γ) and g ≥ 1 (the grading
parameter which determines the concentration of panels towards edges). We shall study the convergence
and complexity of our method as N → ∞, with g fixed (although, in general, g may depend on the integral
equation being solved, the polynomial degree of the elements and the angles at the corners of Γ). Since some
part of the mesh on Γ will be defined using tensor product constructions, we also introduce a coordinate-wise
discretisation parameter n ∈ N such that N ∼ n2. The maximum mesh diameter will be proportional to
n−1.

We will use the symbol “. ” to compare two quantities A . B if there exists a constant C > 0 which is
independent of N such that A ≤ CB.

Algorithm 2.2 (Construction of the mesh) The meshing is applied to the four different types of region
separately after the introduction of the δ-strip.

Step 1: Edge-parallel mesh lines.

For n ∈ N, insert further polygons γ
‖
ℓ , 1 ≤ ℓ ≤ n − 1, into Γ which are

parallel to γ and have distance δ (ℓ/n)g from γ. For any vertex Pℓ of γ,

there exists a corresponding vertex P
‖
ℓ in γ

‖
ℓ .

Step 2: Rectangular meshes on rhombi near convex vertices.

The straight line segments which meet at each P
‖
ℓ are prolonged until they

hit γ. This produces a locally rectangular (non shape-regular) mesh on
each near-vertex rhombus which is graded towards the outer edges of the
rhombus (cf. Figure 1 (left)). The panels on the diagonal (towards the
corner) are congruent to the near-vertex rhombus, i.e., they are shape-
regular.

Step 3: Rectangular meshes on L-shaped regions at concave corners.
We consider an L-shaped region as in Figure 1 (right). In the two trian-

gles Q1PQ
‖
1 and PQ3Q

‖
3 we use the same mesh as in a convex corner:

graded towards the corner. Elements on the two lines Q
‖
1P and Q

‖
3P are

then shape-regular. In the remaining part of the L-shaped region we use
a shape-regular mesh that can be either conforming or non-conforming.
We show the non-conforming case in Figure 1 (right).

Step 4: Quadrilateral meshes on near-edge trapezia.
Consider a near-edge trapezium with vertices ABCD so that AB ⊂ γ
and CD ⊂ γ‖. Subdivide AB into n equidistant segments and CD into
n equidistant segments and connect the opposite grid points in AB with
those in CD by lines.

Step 5: Refinement of the inner region. The inner region is finally par-
titioned with a quasi-uniform mesh consisting of triangles and quadri-
laterals of diameter O

(
n−1

)
such that the mesh points on γ‖ already

defined above coincide with the mesh points of the inner mesh at γ‖.
The quadrilaterals can be subdivided into triangles if required.
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Remark 2.3 The insertion of the lines as described in Algorithm 2.2, Step 4, subdivides the trapezium with
vertices A, B, C, D into n smaller trapezia which we call containers. Each container Q consists of n
parallel panels and has one and only one edge which lies in γ (namely the edge AB). The extension of this
edge to an infinite line is called base line and denoted by γQ.

Since we will need it later, we now give the following explicit example.

Example 2.4 Let Γ = [0, 1] × [0, 1] and define the rectangular mesh:

T := {[pi−1, pi] × [pj−1, pj ] : i, j = 1, . . . , 3n}

where pi :=






δ( i
n)g , 0 ≤ i ≤ n

δ + (1 − 2δ)( i−n
n ) , n ≤ i ≤ 2n

1 − δ(3n−i
n )g , 2n ≤ i ≤ 3n

, and δ :=
1

g + 2
.

(The inner square γ‖ is denoted by the thick lines in the figure .)
Recalling that N ∼ n2, we see that near edges but away from corners, we have degenerate elements with

length ∼ N−1/2, and width ∼ ρτ ∼ N−g/2, i.e. aspect ratio growing with N (g−1)/2 as N → ∞. The reason
for the specific choice of δ is that it ensures that adjacent elements on each side of any one of the thick lines
have approximately the same sizes (as N → ∞).

Now let S denote the space of piecewise constant functions with respect to the mesh on Γ. The analysis of
the use of such graded meshes for approximating boundary integral equations on polyhedra can be found, for
example, in [21, 22, 6, 7, 11]. In particular (see, e.g. [7, Theorem 1.4]) it is known that the Galerkin solution
U ∈ S (see (2.3)) to the model problem in Example 2.1 on a Lipschitz polyhegral surface (for sufficiently
smooth data f) satisfies:

‖u− U‖H−1/2(Γ) . N−3/4 when g > 3 . (2.5)

Note that (2.5) constitutes an optimal estimate in terms of number of degrees of freedom N , since in the
case of quasi-uniform meshes on smooth surfaces, we expect O(h3/2) convergence in the H−1/2 norm, and
the mesh diameter h ∼ N−1/2. Suboptimal convergence is attained for 1 ≤ g ≤ 3. (This result also extends
to some higher order elements [21].)

The central problem which we are concerned with in this paper is the construction of a data-sparse
representation of the dense stiffness matrix K appearing in (2.4) which has optimal complexity but for
which the convergence rates (2.5) are preserved.

3 Panel-Clustering for Graded Meshes

The basic idea of the panel-clustering algorithm is to approximate the kernel k in (2.1) by a (short) separable
expansion when x and y belong to sufficiently well-separated sets. We briefly recall the essential ingredients
of the panel-clustering method before we explain the modifications for stretched meshes.

From now on, the mesh T on Γ will be written T = {τi : i ∈ I}, where I is a suitable index set. For
each i, let ξi denote the incenter (center of the largest inscribed circle), let hi denote the diameter and let
ρi denote the diameter of the largest inscribed circle in the panel τi.

3.1 Classical Panel-Clustering (Isotropic Admissibility)

Definition 3.1 (Cluster) A cluster t is a subset of I. If t is a cluster, the corresponding subdomain of Γ
is Γt :=

⋃
i∈t τi.
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The clusters are collected in a hierarchical cluster tree TI .

Definition 3.2 (Cluster Tree) A tree TI is a cluster tree if the following conditions are satisfied.

1. The nodes in TI are clusters.

2. The root of TI is I.

3. The leaves of TI are denoted by L(TI) and the tree hierarchy is given by a father/son relation: For
each interior node t ∈ TI \ L(TI), the set of sons of t, sons(t), is the minimal subset in TI\ {t} such
that

t =
⋃̇

s∈sons(t)

s

holds. Vice versa, the father of any s ∈ sons(t) is t.

The standard (geometrically regular) construction of the cluster tree TI is as follows. Choose a bounding
box

B̃ := [a1, b1) × [a2, b2) × [a3, b3) ⊃ Γ.

Then subdivide B̃ by bisecting a longest side, thus obtaining two sons B̃1, B̃2, e.g.,

B̃1 = [a1, b
′
1) × [a2, b2) × [a3, b3), B̃2 = [a′1, b1) × [a2, b2) × [a3, b3) where a′1 = b′1 := (a1 + b1)/2.

Finally, applying the same bisection process recursively, starting with B̃1 and B̃2, yields an infinite tree Tbox

with root B̃. Letting B̃j denote a typical box in this tree, we can define a corresponding cluster by (cf.
Figure 2)

t(B̃j) := {i ∈ I | ξi ∈ B̃j}.
This yields an infinite cluster tree with root t(B̃). We construct a finite cluster tree by deleting (not
constructing) sons of clusters below a minimal cardinality nmin, e.g. nmin := 8. The cardinality of the
cluster tree for the meshes introduced in §2, as well as the complexity of its construction will be estimated in
§5. (Note that for the special case that Γ is a flat polygon we may choose B̃ as a two-dimensional bounding
box.)

For a cluster, t ⊂ I, let Bt denote the minimal bounding box (of the type from above) of Γt.
Conventionally, in order to obtain the approximation of the matrix K in (2.4), the kernel function k is

approximated on Γt × Γs, where (t, s) is a pair of clusters which satisfy the following condition.

Definition 3.3 (Isotropic Admissibility Condition) Choose an isotropic admissibility parameter ηiso >
0. A pair of clusters (t, s) ∈ TI × TI is isotropically (ηiso-) admissible if

max {diamBt, diamBs} ≤ ηiso dist(Bt, Bs). (3.1)

The standard choice for the parameter in (3.1) is ηiso := 1.
The admissibility condition (3.1) allows us to define a non-overlapping partition of I × I into admissible

pairs of clusters (called block clusters) and non-admissible pairs of (small) clusters. This partition is formed
by the leaves of the block cluster tree T iso

I×I which we now define.

Definition 3.4 (Block Cluster Tree T iso
I×I) Let TI be a cluster tree. Then the block cluster tree T iso

I×I
based on the isotropic admissibility condition (3.1) is defined by the root (I, I) and the father-son relation
for b = (t, s) ∈ T iso

I×I :

sons (b) :=

{
∅ if (t, s) is isotropically ηiso-admissible,
sons(t) × sons(s) otherwise.
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Figure 2: Left: Tree of regular boxes B̃ obtained by bisection. Right: Tree of corresponding clusters t = t(B̃).
The black dots mark the corresponding incenters ξi of the panels τi ∈ T .

The practical construction of the block cluster tree T iso
I×I from the root to the leaves is straightforward

(cf. [18], [16]). The leaves L(T iso
I×I) consist of two different types of block clusters,

Liso
far := {b ∈ L(T iso

I×I) : b is isotropically ηiso-admissible }, Liso
near := L(T iso

I×I) \ Liso
far.

These are known as the nearfield block clusters (Liso
near) and the farfield block clusters (Liso

far). For each
block cluster b = (t, s) we denote the corresponding domain by Γb := Γt × Γs. The set of all subdomains
P iso = {Γb | b ∈ L(T iso

I×I)} is a partition of the tensor surface Γ × Γ. The partition P iso consists of two
different types of subdomains, the farfield P iso

far and the nearfield P iso
near:

P iso
far :=

{
Γb : b ∈ Liso

far

}
, P iso

near := P iso \ P iso
far .

On each admissible block Γb ∈ P iso
far the kernel function k is approximated by a degenerate expansion of the

form

k̃b(x,y) =
M∑

ν=1

Φb,ν(x)Ψb,ν(y), (x,y) ∈ Γt × Γs. (3.2)

Remark 3.5 For the kernel function of the single layer potential for the Laplace problem allowable expansion
functions in (3.2) include, e.g., polynomial interpolation, multipole expansions, and Taylor expansion. One
can show (for the proofs we refer, e.g., to [26], [1]) that, for sufficiently small ηiso, there exist constants
0 < σ < 1 (depending on ηiso) and 0 < C < ∞ with the following property: For all isotropically admissible
blocks b = (t, s) ∈ Liso

far the Taylor expansion, Čebyšev interpolation, or multipole expansion of order m
satisfies ∣∣∣k(x,y) − k̃b(x,y)

∣∣∣ ≤ Cσm (dist(Bt,Bs))
−1 ∀(x,y) ∈ Γt × Γs. (3.3)

The number of terms M in (3.2) depends on m through M (m) = mq for some q ∈ {2, 3}.
For interpolation and multipole expansions, (3.2) can be generalised so that the expansion functions only

depend on the clusters and not on the blocks.

In the following, we briefly will sketch the algorithmic realisation in the case of the Laplace single layer
potential in Example 2.1 discretised by the Galerkin BEM with piecewise constant boundary elements.

For b = (t, s) ∈ Liso
far we define the matrices known as the “farfield coefficients” by

Lb
i,ν :=

∫

τi

Φb,ν(x)dsx, Rb
ν,j :=

∫

τj

Ψb,ν(y)dsy, i ∈ t, j ∈ s, ν ∈ {1, . . . ,M},

and the nearfield matrix Vnear with entries

Vnear
i,j :=

{ ∫
τi×τj

k(x,y)dsxdsy if i ∈ t, j ∈ s, (t, s) ∈ Liso
near

0 otherwise.
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The number of columns of Lb and the number of rows of Rb is equal to M . We have in mind that M will
be small compared to N (typically M ∼ logq N for some q ∈ {2, 3}). For the Laplace single layer potential
on the screen (Example 2.1) M ∼ log2N (see [1]).

The bilinear form

a(U, V ) =

∫

Γ×Γ
k(x,y)U(x)V (y)dsxdsy ∀U, V ∈ S

is split into the blockwise bilinear forms

a(U, V ) =
∑

b∈Liso
near∪Liso

far

∫

Γb

k(x,y)U(x)V (y)dsxdsy

︸ ︷︷ ︸
=:ab(U,V )

.

The panel-clustering approximation ã(U, V ) of the bilinear form a(U, V ) is then obtained by replacing the
blockwise bilinear form ab(U, V ) in the farfield blocks b = (t, s) ∈ Liso

far by

ãb(U, V ) :=

∫

Γb

k̃b(x,y)V (x)U(y)dsxdsy =
M∑

ν=1

∫

Γb

Φb,ν(x)Ψb,ν(y)V (x)U(y)dsxdsy

=
∑

i∈t

∑

j∈s

(
LbRb

)

i,j
V (ξi)U(ξj). (3.4)

The final equality follows because here we have restricted to piecewise constant elements.
The nearfield matrix Vnear contains all contributions from the nearfield blocks b ∈ Liso

near. It is sparse since
P iso

near covers only a small part of the tensor surface Γ × Γ. The farfield coefficients Lb and Rb for blocks
b ∈ Liso

far can be computed by standard quadrature techniques, since the degenerate expansion functions are
smooth in the farfield. They contain only M(#t+ #s) entries instead of the #t#s entries of the full block
t× s.

In [9], the stability and convergence of the standard panel-clustering method is analysed for general classes
of meshes, including the stretched meshes discussed in §2. It is shown there that the mesh degeneracy does
not affect the accuracy of the approximation. However it turns out that the standard algorithm is not
optimal in terms of complexity, as the following example shows.

Example 3.6 Consider the Laplace single layer equation from Example 2.1 and consider piecewise constant
elements on the meshes on the unit square in Example 2.4. In order to obtain optimal convergence rates we
have to choose g > 3 (see (2.5)).

We fix an arbitrary index n+ 1 ≤ i ≤ 2n. All panels τi,j := [pi−1, pi] × [pj−1, pj ] satisfy

pi − pi−1 = (1 − 2δ)n−1 =

(
g

g + 2

)
n−1 >

3

5
n−1.

On the other hand, for all indices j = 1, . . . , n1−1/g + 1 we have

pj−1 = δ(j − 1)gn−g ≤ δng−1n−g ≤ 1

5
n−1 <

3

5
n−1,

so that for all j, ℓ ∈ J := {1, . . . , n1−1/g + 1}

dist(τi,j , τi,ℓ) <
3

5
n−1.

Thus any pair of clusters (t, s), where both t and s contain a panel τi,j with j ∈ J , cannot be isotropically
admissible when the parameter ηiso is chosen such that ηiso ≤ 1. Therefore, in the rows of the matrix K
corresponding to the indices {(i, j) | i = n + 1, . . . , 2n, j ∈ J} there are at least #J = n1−1/g nearfield
entries that must be computed and stored. There are n2−1/g such rows and so we have to store at least
n3−2/g = O(N3/2−1/g) entries, i.e., the (storage) complexity of conventional panel clustering is at least this.
As g increases, the complexity approaches O(N3/2).
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3.2 Anisotropic Admissibility

The reason for the sub-optimal performance of the panel-clustering method for stretched meshes is the
isotropic admissibility condition. The nearfield of the long thin elements which lie close to edges of Γ
becomes too large.

This problem is overcome by a modified panel-clustering algorithm which will be presented next.

3.2.1 The Case of the Screen

To illustrate the underlying idea we first consider the screen domain Γ from Example 2.4. Let two panels
parallel to the x-axis be of the form

τ
B

A

α β

τ

βα

B

A

τ = (α, β) × (A,B),
τ ′ = (α′, β′) × (A′, B′)

(3.5)

with α < β, α′ < β′, A < B < A′ < B′.

Suppose also that

max{diam(τ),diam(τ ′)} ≥ max{β − α, β′ − α′} > ηiso(A′ −B) = ηiso dist(τ, τ ′) , (3.6)

but at the same time
max{B −A,B′ −A′} ≤ ηiso (A′ −B). (3.7)

Clearly (3.6) indicates that this pair of panels is inadmissible in the sense of condition (3.1). The problem is
that the long sides (with length β−α and β′−α′) are much longer than the distance between the elements.
On the other hand if somehow the lengths of the long sides could be ignored then these elements would
become admissible by virtue of (3.7). The essence of our new method is the observation that, provided the
elements are parallel, analytic partial integration may be performed, leading to a new admissibility criterion
which admits pairs satisfying (3.7) but not (3.1).

Continuing with the example (3.5), assuming U and V are piecewise constant functions and using the
notation x = (x1, x2),y = (y1, y2), we obtain

∫

τ

∫

τ ′

k(x,y)V (x)U(y)dxdy = V (ξ)U(ξ′)
∫ B

A

∫ B′

A′

∫ β

α

∫ β′

α′

k((x1, x2), (y1, y2))dy1dx1dy2dx2

= V (ξ)U(ξ′)
∫ B

A

∫ B′

A′

kad(x2, y2)dy2dx2 ,

where ξ and ξ′ are the incenters of τ, τ ′ and kad(x2, y2) :=
∫ β
α

∫ β′

α′ k((x1, x2), (y1, y2))dy1dx1 is the antideriva-
tive of k. We will show that the twofold integration over the long directions (α, β), (α′, β′) leads to a kernel
function kad : (A,B) × (A′, B′) → R which is admissible for the one-dimensional intervals (A,B), (A′, B′)
via the one-dimensional admissibility condition (3.7).

The idea can be carried over to pairs of clusters (instead of pairs of panels), provided they fulfil the
following anisotropic admissibility condition.

Definition 3.7 (Anisotropic Admissibility Condition for the Screen) Choose ηaniso > 0. A pair of
clusters (t, s) ∈ TI × TI is anisotropically (ηaniso-) admissible if all panels τi, i ∈ t, and τj, j ∈ s, are of the
form (in some suitable coordinate system, cf. Figure 3):

τi = (At
i, B

t
i) × (αt, βt), τj = (As

j , B
s
j ) × (αs, βs), (3.8)

or
τi = (αt, βt) × (At

i, B
t
i), τj = (αs, βs) × (As

j , B
s
j ) (3.9)

9



and
max{|Bt −At|, |Bs −As|} ≤ ηaniso dist(Bt,Bs), (3.10)

where At := min
{
At

i : i ∈ t
}
, Bt := max

{
Bt

i : i ∈ t
}

and As, Bs are defined analogously.

A

B
A

A

B

B

B

A

γ

s

s
t

t

sstt

γ

Figure 3: Examples of pairs (t, s) of anisotropically admissible clusters.

Let t and s, b := (t, s), be two clusters with corresponding panels of the form (3.8) or (3.9). The evaluation
of the blockwise bilinear form ab(U, V ) for two piecewise constant finite element functions U and V can be
written in the form

ab(U, V ) =

∫

Γb

k(x,y)V (x)U(y)dxdy

=

∫ βt

αt

∫ βs

αs

∑

i∈t

∑

j∈s

∫ Bt
i

At
i

∫ Bs
j

As
j

V (x1, x2)U(y1, y2)k((x1, x2), (y1, y2))dy2dx2dy1dx1

=
∑

i∈t

∑

j∈s

V (ξi)U(ξj)

∫ Bt
i

At
i

∫ Bs
j

As
j

kad
b (x2, y2)dy2dx2,

where kad
b , as before, is the antiderivative of k,

kad
b (x2, y2) =

∫ βt

αt

∫ βs

αs

k((x1, x2), (y1, y2))dy1dx1. (3.11)

In Section 4 we will prove that for an anisotropically admissible block b = (t, s) the integrated kernel kad
b

can be approximated by a degenerate kernel k̃ad
b of the form

k̃ad
b (x2, y2) =

m∑

ν=1

Φb,ν(x2)Ψb,ν(y2). (3.12)

The bilinear form ab(U, V ) is then approximated by

ãb(U, V ) :=
∑

i∈t

∑

j∈s

V (ξi) U(ξj)

∫ Bt
i

At
i

∫ Bs
j

As
j

m∑

ν=1

Φb,ν(x2)Ψb,ν(y2)dy2dx2

=
∑

i∈t

∑

j∈s

V (ξi) U(ξj)
m∑

ν=1

∫ Bt
i

At
i

Φb,ν(x2)dx2

︸ ︷︷ ︸
=:Lb

i,ν

∫ Bs
j

As
j

Ψb,ν(y2)dy2

︸ ︷︷ ︸
=:Rb

ν,j

=
∑

i∈t

∑

j∈s

(LbRb)i,jV (ξi)U(ξj), (3.13)

where Lb ∈ R
#t×m and Rb ∈ R

m×#s. Since it will turn out that m can be chosen proportional to log(N),
the storage and matrix by vector complexity is O(log(N)(#t+ #s)) instead of the quadratic complexity for
the standard representation.
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Combining the isotropic and anisotropic admissibilities, we arrive at a final block cluster tree TI×I de-
scribed as follows.

Definition 3.8 (Block Cluster Tree TI×I) Let TI be a cluster tree. Then the block cluster tree TI×I
based on the admissibility conditions (3.1), (3.10) is defined by the root (I, I) and the father-son relation
for b = (t, s) ∈ TI×I :

sons (b) :=

{
∅ if (t, s) is isotropically or anisotropically admissible,
sons(t) × sons(s) otherwise.

The leaves b ∈ L(TI×I) of the block cluster tree form a partition of I ×I and the corresponding domains
Γb yield a partition of the tensor surface Γ×Γ. In contrast to the isotropic case discussed in Definition 3.4,
three different types of blocks will appear in this case:

• LII
far := {b ∈ L(TI×I) : b is anisotropcally admissible, but not isotropically admissible}

These blocks allow an approximation by ãb given in (3.13) and involve the integrated kernel k̃ad
b .

• LI
far := {b ∈ L(TI×I) : b is isotropically admissible}

These are treated by the standard techniques (3.4).

• Lnear := L(TI×I)\Lfar, Lfar := LII
far ∪ LI

far.

For these blocks we use the original bilinear form ab.

For the block cluster tree TI×I we will prove in Section 5 that the nearfield matrix Vnear corresponding
to entries from nearfield blocks b ∈ Lnear is sparse (i.e., O(N) entries). This means that the generalised
panel-clustering approximation

ã(U, V ) :=
∑

b∈Lnear

ab(U, V ) +
∑

b∈Lfar

ãb(U, V ) (3.14)

can be evaluated in O(N log(N)M) operations, where M ≈ log2N . In Section 4 we prove the consistency of
the panel-clustering approximation, i.e. that the complexity of O(N log3N) is attained without damaging
the accuracy of the underlying boundary element method.

3.2.2 The Case of a Polyhedral Surface

The anisotropic admissibility condition (Definition 3.7) can be extended to the case of polyhedral surfaces Γ
which are composed of faces with polygonal boundaries. Recall the definition of the containers Q and their
base line γQ as in Remark 2.3.

Definition 3.9 (Anisotropic Admissibility Condition for Polyhedral Surfaces) A pair of clusters
(t, s) is anisotropically admissible with respect to γ ∈ E, if there exist containers Qt, Qs with the same base
line γQt = γQs such that

Γt ⊂ Qt and Γs ⊂ Qs

and
max {Ht, Hs} ≤ ηaniso dist(Bt,Bs),

where for i = s, t
Hi := sup

x,y∈Γi

{‖x − y‖ : (x − y) ⊥ (γQi)} .

11



Analogously to the screen case, the integration parallel to γQs = γQi is carried out analytically leading again
to an antiderivative of the kernel function which can be approximated efficiently by panel clustering with
respect to the remaining (orthogonal) variables.

To be more precise, let (t, s) be a pair of clusters which is anisotropically admissible. Let Qt, Qs denote
the containers for t, s which have the common base line γQ = γQt = γQs . Note that Qt and Qs may be
subsets on the same face of Γ or subsets of two adjoining faces of Γ. We choose a local coordinate system
such that the x1− axis points in the direction of γQ and t lies in the (x1, x2)-plane. Because of the meshing
algorithm, we have

t =
{
(x1, x2, 0)⊺ ∈ R

3 | At ≤ x2 ≤ Bt and αt (x2) ≤ x1 ≤ βt (x2)
}
, (3.15)

where At < Bt are constants and αt, βt are affine functions which satisfy αt (x2) < βt (x2) for all At ≤ x2 ≤
Bt. Analogously s is described by

s = {(w1, w2 cosϕ,w2 sinϕ)⊺ | As ≤ w2 ≤ Bs and αs (w2) ≤ w1 ≤ βs (w2)} .

Again, As < Bs are constants and αs, βs are affine functions which satisfy αs (w2) < βs (w2). The angle
ϕ ∈ [0, 2π[ is fixed and denotes the angle between Γt and Γs. The antiderivative of the kernel function is
then defined (analogously to (3.11)) by

kad
b (x2, y2) :=

∫ βs(y2)

αs(y2)

∫ βt(x2)

αt(x2)
k (χt (x1, x2) , χs (w1, y2)) dx1dw1, (3.16)

where χt, χs denote a unitary transformation of the two-dimensional coordinate systems to the surface
panels.

An illustration of a pair of admissible clusters in this case is given in Figure 4.

t

s
H

tH

s

γQ

Figure 4: A pair of admissible clusters (t, s).

The panel-clustering method for anisotropic elements uses an approximation of kad
b by a degenerate ex-

pansion k̃ad
b of the form

k̃ad
b (x2, y2) =

m∑

ν=1

Φb,ν (x2)Ψb,ν (y2) . (3.17)

The following assumption states that the approximation k̃ad
b converges exponentially towards kad

b .

Assumption 3.10 Let k denote the kernel of the single layer operator and let kad
b be as in (3.16). For

sufficiently small ηaniso, there exist constants 0 < δ < 1 (depending on ηaniso) and 0 < C < ∞ with
the following property: For all anisotropically admissible blocks b = (t, s) ∈ Laniso

far there exist a family of
degenerate expansions k̃ad

b (·, ·) depending on a parameter m ∈ N of the form (3.17) with

∣∣∣kad
b (x,y) − k̃ad

b (x,y)
∣∣∣ ≤ Cm2δm ∀ (x,y) ∈ Γt × Γs. (3.18)

12



Remark 3.11 The proof of (3.18) in the case of the screen problem is given in Theorem 6.4, while the
general case can be analysed along the same lines.

Remark 3.12 Higher order elements can also be treated by anisotropic panel clustering provided we write
the basis functions as a sum of products of the form ψ(x1)φ(x2), with x1 being the coordinate in the direction
orthogonal to the base line γQ.

Along the edges of the surface Γ it usually happens that stretched elements from two different containers
(meeting at the edge) are contained in the same cluster t. In this situation, we will consider a pair (t, s)
admissible even if this is only true for the two subsets of t coming from each of the two containers.

Definition 3.13 (Generalised Anisotropic Admissiblity Condition) Let Ccl be a given constant (cf.
§5, typically Ccl = 2). A pair of clusters (t, s) is (generalised) anisotropically admissible if there exists a
partition

t =
⋃̇

i=1,...,Ccl

ti, s =
⋃̇

j=1,...,Ccl

sj

such that each pair (ti, sj) is anisotropically admissible as defined in Definition 3.9.

The generalised anisotropic admissiblity is in accordance with Assumption 3.10, because after the sub-
division into Ccl × Ccl subblocks one can apply the one-dimensional expansion as in (3.17) for the arising
sub-blocks.

4 Error Analysis

In this section, we will prove the consistency and stability of the generalised panel-clustering algorithm for the
single layer potential equation from Example 2.1 discretised by piecewise constant elements on the stretched
meshes defined in Algorithm 2.2. In [9] the consistency and stability of the standard panel clustering method
for such meshes was proved. Thus the results here are a generalisation of those, with particular emphasis on
the approximations on the anisotropic blocks. The error analysis will be based on the second Strang Lemma
which we briefly recall. Let ã : S × S → R denote the bilinear form corresponding to the panel-clustering
approximation (3.14). The corresponding approximate Galerkin method is to seek Ũ ∈ S such that

ã(Ũ , V ) = (g, V ) (4.1)

The following theorem follows from [5] (see in particular [9, Lemma 4.2, equation (4.24)]).

Theorem 4.1 Assume that there exists a continuous function µ : R+ → R+ with µ (N) → 0 as N → ∞
such that, for all V,W ∈ S

(i) |a (V,W ) − ã (V,W )| . µ (N) ‖V ‖H−1/2(Γ) ‖W‖H−1/2(Γ) ,

(ii) |a (V,W ) − ã (V,W )| . N−3/4 ‖V ‖L2(Γ) ‖W‖H−1/2(Γ) .

Then, for N sufficiently large, a unique solution Ũ ∈ S of (4.1) exists and satisfies

∥∥∥u− Ũ
∥∥∥

H−1/2(Γ)
. N−1/4 inf

Z∈S
‖u− Z‖L2(Γ) +N−3/4 ‖u‖L2(Γ) .

The fact that u ∈ L2(Γ) follows from [4, Theorem 3]. Now it is shown in [21, Satz 3.7] that a suitable
choice of g can be made which ensures that infZ∈S ‖u− Z‖L2(Γ) = N−1/2 and so in this case we obtain the
estimate: ∥∥∥u− Ũ

∥∥∥
H−1/2(Γ)

. N−3/4 . (4.2)
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In the remaining part of this section, we will prove that the bilinear form ã (·, ·) satisfies the assumptions
(i) and (ii) of Theorem 4.1. To reduce technicalities we assume for the following that the boundary element
mesh T is conforming, i.e., the intersection τ ∩ σ of any two non-identical panels τ, σ ∈ T is either empty
or a common vertex or a common edge. This can be easily achieved by performing an appropriate closure
of the mesh for the L-shaped regions in Algorithm 2.2, Step 3. Furthermore, we assume that all panels are
convex and the interior angles are bounded above by a constant αmax < π. We introduce a positive-valued
continuous function ρ as follows. For each panel τ , let ρτ denote the diameter of the largest inscribed disc.
Let Ŝ denote the unit triangle with vertices (0, 0), (1, 0), (0, 1) and let Q̂ := (0, 1)2 denote the unit square.
For each τ ∈ T , if τ is a triangle, let χτ : Ŝ → τ denote an affine bijection, and, if τ is a quadrilateral, let
χτ : Q̂→ τ denote a bijection which is affine in each variable. Then ρ is defined by requiring:

For all panels τ : ρ ◦ χτ is

{
affine if τ is a triangle,
affine in each variable if τ is a quadrilateral.

For all panel vertices xp : ρ (xp) = max{ρτ : xp ∈ τ}.

We use the function ρ in the proof of the following result.

Theorem 4.2 Assume that we are solving the single layer potential equation in Example 2.1 on a Lipschitz
polyhedral surface Γ, meshed as in Algorithm 2.2 and choose g = 3 + ǫ, where ǫ > 0 is any small number.
Let σ be as in Remark 3.5 and let Assumption 3.10 be satisfied for some 0 < δ < 1. Choose the orders m of
the panel-clustering according to

m =

⌈
(2 + ǫ) logN

| log σ|

⌉
for the isotropic panel clustering, (4.3)

m =

⌈
(5/2 + ǫ) logN

| log δ|

⌉
for the anisotropic panel clustering, (4.4)

where ⌈x⌉ denotes the smallest integer z with z ≥ x. Then the assumptions (i) and (ii) of Theorem 4.1 hold.

Proof. For a block b ∈ LI
far, let k̃b denote the approximation as in (3.4) and let εb := k − k̃b denote the

corresponding error. For a block b ∈ LII
far, the partially integrated kernel function is denoted by kad

b (cf.
3.16) and the approximation by k̃ad

b (cf. (3.12)). The corresponding error is denoted by εadb = kad
b − k̃ad

b .
Thus

|a (U, V ) − ã (U, V )| ≤
∑

b∈LI
far

∫

b

|εb (x,y)| |U (x)| |V (y)| dsxdsy

+
∑

b∈LII
far

∫ Bt

At

∫ Bs

As

∣∣∣εadb (x2, y2)
∣∣∣ |U (x2)| |V (y2)| dx2dy2

=: EI (U, V ) + EII (U, V ) , (4.5)

where for all b = (s, t) ∈ LII
far and (i, j) ∈ (s, t) we have set

U(x2) := U(ξi) for all x2 : (x1, x2) ∈ τi,

V (y2) := V (ξj) for all y2 : (y1, y2) ∈ τj .

In the definition of EII we have assumed the scenario and notation as in (3.9), i.e. b = (t, s), with

Γt =
⋃#t

i=1
τi , with τi = (αt, βt) × (At

i, B
t
i) , hi = βt − αt , ρi = Bt

i −At
i , (4.6)

and the analogous definition of Γs.
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We first turn to the estimate of EI and proceed as in [9]. From Assumption 3.5, and the fact that θ = 1,
we obtain

EI(U, V ) . σm
∑

(t,s)∈LI
far

∫

Γt×Γs

1

dist(Bt,Bs)
|U(x)||V (y)|dsydsx

= σm
∑

(t,s)∈LI
far

1

dist(Bt,Bs)

∫

Γt

|U(x)|dsx
∫

Γs

|V (y)|dsy.

Since (t, s) is an isotropically admissible pair, from (3.3), we have

dist(Bt,Bs)
−1 ≤ ηiso max(diamBt,diamBs)

−1 ≤ ηisoh−1
i , for all i ∈ t .

So, using the fact that the sets {Γt × Γs : (t, s) ∈ LI
far} are pairwise disjoint (and also |τi| ≤ h2

i ), we have

EI(U, V ) . ηisoσm
∑

i∈I

∑

j∈I
h−1

i ‖U‖L1(τi)‖V ‖L1(τj) ≤ ηisoσm
∑

i∈I

∑

j∈I
hj ‖U‖L2(τi)‖V ‖L2(τj) .

Now, for any θ ∈ [0, 1/2], using hj . N−1/2 and ρj & N−g/2, we obtain,

EI(U, V ) . ηisoσmN−1/2
∑

i∈I

∑

j∈I
ρ−θ

i ‖ρθU‖L2(τi)ρ
−1/2
j ‖ρ1/2V ‖L2(τj)

. ηisoσmN−1/2Ngθ/2Ng/4
∑

i∈I
‖ρθU‖L2(τi)

∑

j∈I
‖ρ1/2V ‖L2(τj).

Hence using the Cauchy-Schwarz inequality and then the inverse estimates in [9, Theorem 3.6], we have

EI(U, V ) ≤ ηisoσmN−1/2Ngθ/2Ng/4N‖ρθU‖L2(Γ)‖ρ1/2V ‖L2(Γ)

≤ ηisoσmN1/2+gθ/2+g/4‖U‖H−θ(Γ)‖V ‖H−1/2(Γ).

The required estimate for EI(U, V ) follows by observing that by taking m as given in (4.3) and with g = 3+ǫ,

σmN1/2+gθ/2+g/4 .

{
N−3(1+ǫ)/4 if θ = 0,

N−ǫ/2 if θ = 1/2 .

In order to estimate EII(U, V ), take a typical block b = (t, s) in LII
far and assume the notation as in (4.6).

Assumption 3.10 implies ∣∣∣εadb (x2, y2)
∣∣∣ . m2δm .

Hence

EII(U, V ) . m2δm
∑

b=(t,s)∈LII
far

∫ Bt

At

|U(x2)|dx2

∫ Bs

As

|V (x2)|dx2 . (4.7)

Moreover, for any θ ∈ [0, 1/2]

∫ Bt

At

|U(x2)|dx2 =
∑

i∈t

∫ Bt
i

At
i

|U(x2)|dx2 .
∑

i∈t

ρ
1/2
i

{∫ Bt
i

At
i

|U(x2)|2dx2

}1/2

.
∑

i∈t

ρ
1/2−θ
i h

−1/2
i ‖ρθU‖L2(τi).

Since ρi ≤ hi and 1/2 − θ ≥ 0, we have ρ
1/2−θ
i h

−1/2
i . h−θ

i . Ngθ/2, and so

∫ Bt

At

|U(x2)|dx2 . Ngθ/2
∑

i∈t

‖ρθU‖L2(τi). (4.8)
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Hence combining (4.7) and (4.8) and using the Cauchy-Schwarz inequality, we get

EII(U, V ) . m2δmN (gθ/2+g/4)
∑

i∈I
‖ρθU‖L2(τi)

∑

j∈I
‖ρ1/2V ‖L2(τj)

. m2δmN (gθ/2+g/4+1)‖ρθU‖L2(Γ)‖ρ1/2V ‖L2(Γ).

Then, making use of [9, Theorem 3.6], we have

EII(U, V ) . m2δmNgθ/2+g/4+1‖U‖H−θ(Γ)‖V ‖H−1/2(Γ). (4.9)

Now if we choose m as in (4.4) it follows that

δmNgθ/2+g/4+1 .

{
N−3/4(1+ǫ) , θ = 0

N−ǫ/2 , θ = 1/2 ,

and so the required estimates for EII follow.

5 Complexity Analysis

In this section we analyse the complexity of the storage requirements and of the matrix-vector multiplication
for our new version of the panel clustering algorithm. First we introduce a measure of the sparsity of the
block cluster tree TI×I .

Definition 5.1 (Sparsity) The sparsity of a block cluster tree TI×I based on a cluster tree TI is charac-
terised by the quantity

Csp := max

{
max
s∈TI

#{t ∈ TI | s× t ∈ TI×I}, max
t∈TI

#{s ∈ TI | s× t ∈ TI×I}
}
.

The importance of Csp was discussed in [12]. In the case of shape regular meshes and with cluster trees
created using standard bisection algorithms, using the isotropic admissibility condition (3.1) it was shown
in [12, Lemma 4.5] that Csp is bounded independently of N (the number of degrees of freedom in the mesh).
Here we shall extend this result to the anisotropic case. Before we do this, we will state the complexity
bounds for the storage and matrix-vector product of the panel clustering approximation ã(U, V ) of the
bilinearform a(U, V ) based on the measure Csp and the depth p of the cluster tree. Both quantities will
be bounded in Theorem 5.11 under quite general conditions, which are fulfilled for the screen mesh from
Example 2.4.

Theorem 5.2 (Storage and Matrix by Vector Complexity) Let T := TI×I be a block cluster tree
with sparsity Csp and depth p ≥ 1. Let m be the (maximal) interpolation order used for the interpolation
of the kernel function in isotropically or anisotropically admissible blocks. Then the storage requirements
NSt(T,m) and the matrix by vector complexity Nã(U,V )(T,m) for the panel clustering approximation (3.13)
are bounded by

NSt(T,m) = O(Cspm
2p#I), Nã(U,V )(T,m) ∼ NSt(T,m).

In particular for the screen mesh from Example 2.4, we have pm2#I = O(gN log3N).

Proof. a) For each block (t, s) ∈ Lnear we have to store the entries V near
ij for all (i, j) ∈ t×s. The construction

of the block cluster tree ensures that either t or s is a leaf of TI , i.e., #t ≤ nmin or #s ≤ nmin so that at
most nmin(#t+ #s) entries have to be stored.

b) For each block b = (t, s) ∈ Lfar we have to store the entries Lb
i,ν and Rb

ν,j for all i ∈ t, j ∈ s, ν ∈ M ,
where M = {1, . . . ,m} for anisotropically admissible blocks and M = {1, . . . ,mq} (q from Remark 3.5) for
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Figure 5: Left: In the inscribed circle around the incenter ξi there lies no other incenter ξj , j 6= i, i.e.,
Cov = 1. Right: The cluster t is surrounded by many clusters of the type of s1, s2 with very small
distance to t.

isotropically admissible blocks. In total we can bound the number of entries to be stored for the block b by
mq(#t+ #s).

c) Due to (a) and (b) the storage complexity for each block b ∈ L(TI×I) is bounded by max{nmin,m
q}(#t+

#s). We conclude

NSt(T,m) ≤
∑

(t,s)∈L(TI×I)

max{nmin,m
q}(#t+ #s) ≤

∑

t∈TI

∑

(t,s)∈TI×I

max{nmin,m
q}#t

+
∑

s∈TI

∑

(t,s)∈TI×I

max{nmin,m
q}#s ≤ 2Csp max{nmin,m

q}
∑

t∈TI

#t

[12, Rem.1.10]
≤ 2Csp max{nmin,m

q}(p+ 1)#I = O(Cspm
qp#I).

d) The matrix by vector complexity is proportional to the storage complexity because every stored entry
of V near, Lb and Rb is accessed exactly once when computing a matrix-vector product.

Corollary 5.3 (Complexity for the Cluster Tree Construction) A cluster tree TI of depth p ≥ 1 has
at most #TI = O(p#I) nodes. The complexity for the standard construction (so-called geometrically regular
clustering) as introduced in Section 3.1 is O(p#I).

Proof. Using [12, Remark 1.10] we obtain #L(TI) ≤ #I, so that the property t =
⋃̇

s∈sons(t)s for interior
nodes yields #TI = O(p#I). In the standard construction of the cluster tree TI we compute the boxes
B̃1, B̃2 for each node t in O(1) and determine for each point (ξi)i∈t the box to which it belongs, in total
O(#t) operations. Due to [12, Remark 1.10] the sum over all t ∈ TI is O(p#I).

For the following bound on the sparsity measure Csp we will now introduce some mesh-dependent quan-
tities. The first of them is the quantity Cov defined below. This quantifies the maximal number of nearby
panels.

Definition 5.4 We define (cf. Figure 5)

Cov := max
i∈I

# {j ∈ I | dist(ξi, ξj) ≤ ρi/2} ,

where ρi is the diameter of the largest inscribed circle in τi and ξi, ξj are the incenters of τi, τj, respectively.

In many cases, and in particular for the screen mesh from Example 2.4, we have Cov = 1. In general (e.g.
for highly folded surfaces) Cov > 1 might hold.
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Next we want to characterise the alignment (in the sense of (3.8), (3.9) or (3.15)) of stretched panels.
A situation where the constants in the complexity estimates might become large is depicted in Figure 5:
the cluster t containing stretched panels is surrounded by a large number C of clusters s1, . . . , sC that also
contain stretched panels. The cluster si are pairwise unaligned (the union of any two of those clusters would
not fulfil the requirements of the anisotropic admissibility condition). In the following we want to consider
the neighbourhood of a panel.

Definition 5.5 Let Cstr > 2 + 3ηiso. We define the neighbourhood of a panel τi, i ∈ I, by

Nstr(τi) := {j ∈ I | dist(τj , τi) < Cstr(η
iso)−1 max{diam(τi),diam(τj)}.

A partition of the form Nstr(τi) = ∪̇C
ν=1N

ν
str(τi) is an alignment-classification of Nstr(τi), if for all ν =

1, . . . , C the set Nν
str(τi) is aligned, i.e. of the form (3.8), (3.9) or (3.15).

Assumption 5.6 We assume that for any panel τi, i ∈ I, with hi > Caniso ρi there exists an alignment-
classification of Nstr(τi) with not more than Ccl classes, where Ccl depends on the given mesh but is bounded
independently of i, the grading parameter g and the number of unknowns N .

Remark 5.7 For the screen mesh the number of classes is Ccl = O(Cstr/η
iso) independent of Caniso.

The following three auxiliary Lemmata are needed to prove the final Theorem 5.11.

Lemma 5.8 Let t ∈ TI be a cluster of cardinality #t > Cov. If the diameter of the minimal bounding box
Bt is larger than the diameter of the regular box B̃t (cf. Section 3.1, Figure 2) of the cluster tree, i.e.,

diam(Bt) = Cdiam(B̃t), C > 1,

then there exists an index i ∈ t such that

hi ≥ (C − 1)/Cdiam(Bt) and hi >
1

2
(C − 1)ρi.

Proof. Let diam(Bt) = Cdiam(B̃t). Then there exists at least one panel τi with centroid ξi ∈ B̃t and a
point ζ ∈ τi ∩ ∂Bt with dist(ζ, B̃t) ≥ (C − 1)/2diam(B̃t). We conclude hi ≥ 2|ζ − ξi| ≥ (C − 1)diam(B̃t) =
(C − 1)/Cdiam(Bt). Assume that hi ≤ (C − 1)ρi/2. Then ρi ≥ 2hi/(C − 1) ≥ 2diam(Bt)/C = 2diam(B̃t),
so that |ξi − ξj | ≤ ρi/2 holds for all j ∈ t. Due to the assumption #t > Cov this is not possible.

Lemma 5.9 Let t, s ∈ TI be two clusters of cardinality #t > Cov,#s > Cov that are not isotropically admis-
sible: ηisodist(Bt,Bs) < max{diam(Bt),diam(Bs)}. Let diam(Bt) = Cdiam(B̃t) or diam(Bs) = Cdiam(B̃s)
for some C ≥ Cstr/(Cstr − 1− 2ηiso) and diam(B̃t) = diam(B̃s). Then one of the following two cases is true:

1. ∃i ∈ t : s ⊂ Nstr(τi) and hi ≥ 1
2(C − 1)ρi, or

2. ∃j ∈ s : t ⊂ Nstr(τj) and hj ≥ 1
2(C − 1)ρj.

Proof. Case a) Let diam(Bt) = Cdiam(B̃t) and diam(Bt) ≥ diam(Bs). According to Lemma 5.8 there exists
i ∈ t such that hi ≥ 1

2(C−1)ρi and hi ≥ C−1
C diam(Bt). We can now bound the distance of τi to any τj , j ∈ s,

by

dist(τi, τj) ≤ diam(Bt) + diam(Bs) + dist(Bt,Bs) ≤ (2 + (ηiso)−1)diam(Bt)

≤ C

C − 1
(2 + (ηiso)−1)hi =

C

C − 1
(1 + 2ηiso)(ηiso)−1hi ≤ Cstr(η

iso)−1hi.

According to Definition 5.5 j ∈ Nstr(τi), i.e. s ⊂ Nstr(τi).
Case b) Let diam(Bs) = Cdiam(B̃s) and diam(Bs) ≥ diam(Bt). Analogously to Case 1 we have t ⊂ Nstr(τj)
for some j ∈ s and hj ≥ 1

2(C − 1)ρj .
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Lemma 5.10 Let t, s1, . . . , sℓ ∈ TI be clusters of cardinality #t > Cov,#si > Cov that are not isotrop-
ically admissible and max{diam(Bsi),diam(Bt)} ≥ Cdiam(B̃si) = diam(B̃t) where C := max{2Caniso +
1, Cstr/(Cstr − 2 − 3ηiso)}. Then there exists i ∈ t ∪ℓ

i=1 si such that t ∪ℓ
i=1 si ⊂ Nstr(τi) and the panel τi is

stretched in the sense hi > Canisoρi required in Assumption 5.6.

Proof. Let sj denote the cluster with maximal diameter diam(Bsj ) among the s1, . . . , sℓ, t. Due to Lemma

5.9 there is an element i ∈ sj with diam(Bsj ) ≤ C
C−1diam(τi). For any element ν ∈ s ∈ {t, s1, . . . , sℓ} we can

bound

dist(τi, τν) ≤ diam(Bsj ) + dist(Bsj ,Bt)diam(Bt) + dist(Bt,Bs) + diam(Bs)

≤ (3 + 2(ηiso)−1)diam(Bsj ) ≤ (3 + 2(ηiso)−1)
C

C − 1
diam(τi) ≤ (ηiso)−1Cstrdiam(τi),

i.e. ν ∈ Nstr(τi). Lemma 5.9 gives the bound for hi.
For the following theorem we use the notation level(t) for the distance of a cluster t ∈ TI to the root. The

construction of the block cluster tree TI×I ensures that for any block cluster (t, s) there holds level(t) =
level(s) and the corresponding boxes B̃t, B̃s used for the clustering are identical up to translation.

Theorem 5.11 Let T := TI×I be the block cluster tree constructed in Section 3.1 from the cluster tree TI ,
where nmin ≥ Cov, i.e. a cluster with not more than Cov elements is not further subdivided. We assume that
N−g . |ξi − ξj |. Under Assumption 5.6 the following statements hold:
(a) The depth of the tree is bounded by

depth(T ) = O(g logN).

(b) The sparsity constant is bounded (independently of the mesh parameters g and N) by

Csp = O(1).

Proof. (a) Let t ∈ TI be a non-leaf node and ℓ the level of t. We denote the box corresponding to t by
B̃t, where due to the construction diam(B̃t) ∼ 2−ℓ/d. Since t is a non-leaf node, the size of t is at least
#t > 1. Let i 6= j ∈ t be two different indices. Due to the assumed bound N−g . |ξi − ξj | we have
N−g . diam(B̃t) .

√
d2−ℓ/d so that ℓ . g logN follows.

(b) We exploit the structure of the regular subdivision of the box B̃ = [a1, b1) × [a2, b2) × [a3, b3) used for
the clustering in Section 3.1.

p=2

t

p=1

Bt

t

~

B

Figure 6: Left: The first two layers p = 1 and p = 2 around the box B̃t of t. The first layer consists of 9
boxes, the second one of 25 boxes (it includes the first). Right: A cluster t with box B̃t that is
much smaller than the bounding box Bt of Γt. The dashed boxes B̃s correspond to non-empty
clusters s.

1. Let t ∈ TI be a node with level(t) = ℓ and #t > Cov. We count the number of clusters s with
level(t) = ℓ and #s > Cov that are not admissible to t. Let

C := max{2Caniso + 1, Cstr/(Cstr − 2 − 3ηiso)}.
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Case 1) diam(Bt) ≤ Cdiam(B̃t) and diam(Bs) ≤ Cdiam(B̃s) . Since (t, s) is not admissible the relation

dist(Bt,Bs) ≤ (ηiso)−1 max{diam(Bt),diam(Bs)}
≤ (ηiso)−1Cmax{diam(B̃t),diam(B̃s)} = C(ηiso)−1diam(B̃t)

is valid. On the other hand

dist(Bt,Bs) ≥ dist(B̃t, B̃s) − (diam(Bt) + diam(Bs))/2 ≥ dist(B̃t, B̃s) − Cdiam(B̃t),

i.e., dist(B̃t, B̃s) ≤ C(1 + (ηiso)−1)diam(B̃t).

Now the distance of the regular boxes B̃t, B̃s can be measured in layers around t (cf. Figure 6):
There are 3d boxes touching B̃t. By induction it follows that all boxes B̃r with dist(B̃t, B̃r) ≤
pdiam(B̃t)/(2

√
d) are contained in the first p layers, which are at most (2p+ 1)d boxes.

For p ≥ 2
√
dC(1 + (ηiso)−1) the box B̃s is included in the first p layers, i.e., s is one of the

(2p+ 1)d = O(1) clusters of the first p layers.

Case 2) Either diam(Bt) > Cdiam(B̃t) or diam(Bs) > Cdiam(B̃s). Lemma 5.10 shows that there exists
an index i such that t and all clusters s (with the above property) (isotropically) inadmissible to t
are contained in Nstr(τi) and that τi is stretched in the sense hi > Canisoρi. Assumption 5.6 says
that we can find an alignment classification of Nstr(τi) with Ccl = O(1) classes. In each class, the
one-dimensional anisotropic admissibility (3.15) applies. In this situation at most O((ηansio)−1)
clusters s form an inadmissible pair (t, s).

2. As a consequence of 1), the number of nodes s ∈ TI (with level(s) = level(t), #s > Cov and #t > Cov)
not admissible to t is bounded by O(1).

3. Let t′ ∈ TI be arbitrary. If t′ is the root of TI , then there is exactly one cluster on the same level,
namely t′. Therefore a sparsity constant Csp ≥ 1 would be sufficient. If t′ is not the root, then the
father cluster t of t′ fulfils #t > nmin ≥ Cov. Due to 2) we conclude that there are at most O(1)
clusters s ∈ TI with s× t ∈ TI×I so that there are at most O(1) clusters s′ ∈ TI with s′ × t′ ∈ TI×I .
This is the desired bound for Csp.

The previous Theorem gives a rigorous proof that the sparsity constant is independent of N or the
geometry and behaves like O(1) for fixed ηiso, ηaniso from the admissibility condition and fixed constants
Cov, Cstr, Caniso, Ccl describing the geometry and mesh. For the screen mesh with ηiso = ηaniso = 1 the
constants Cov := 1, Cstr := 6, Caniso := 2 and Ccl := 12 fulfil all the requirements.

6 Exact Integration

6.1 The Partially Integrated Kernel: Simple Case

In this section we investigate the analytical properties of the partially integrated kernel kad defined in (3.11).
We show that the Assumption 3.10 holds true in the case of the Laplace single layer potential kernel in
Example 2.1. Thus we are concerned with the function:

kad
b (x, y) =

1

4π

∫ βt

αt

∫ βs

αs

((y1 − x1)
2 + (y − x)2)−1/2dy1dx1. (6.1)

A suitable analytic formula is given in the following lemma.
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Lemma 6.1 For any x, y ∈ R,

kad
b (x, y) = κ(αs − βt, x− y) + κ(βs − αt, x− y) − κ(αs − αt, x− y) − κ(βs − βt, x− y), (6.2)

where

κ(ξ, z) :=
1

4π

[√
ξ2 + z2 − ξ ln

(
ξ +

√
ξ2 + z2

)]
. (6.3)

Proof. The assertion follows by using

∂κ (ξ, z)

∂ξ
= −

ln
(
ξ +

√
z2 + ξ2

)

4π
and

∂2κ (ξ, z)

∂ξ2
= − 1

4π
√
z2 + ξ2

and some obvious substitutions.
(Note that this lemma could be generalised to the case of higher order basis functions, in which case an

additional polynomial factor appears in (6.1), cf [13]).
Our next result obtains bounds for the derivatives with respect to x of a typical term from the right-hand

side of (6.2).

Lemma 6.2 There exists an absolute constant C such that

∣∣{∂jκ/∂zj} (ξ, z)
∣∣ ≤ C j! |ξ|

(
2√

ξ2 + z2

)j

, for all j ≥ 1, . . . ,

for all ξ, z ∈ R with (ξ, z) 6= (0, 0). (The factor 2 in the right-hand side can be replaced by 1 by a more
refined analysis.)

Proof. First consider fixed ξ 6= 0, and write κ(ξ, z) = (f(ξ, z) − g(ξ, z)) / (4π), where

f (ξ, z) :=
√
ξ2 + z2 and g(ξ, z) := ξ ln (ξ + f (ξ, z)) .

To bound the derivatives of f , note first that {∂jf/∂zj} (ξ, z) = ξ1−j f̂ (j) (z/ξ), where f̂(z) :=
√

1 + z2.

Then for any z ∈ R, let Dz denote the disc centred on z with radius
√

1+z2

2 , and let Cz denote its boundary.

Since f̂ is analytic in Dz, Cauchy’s integral formula yields

1

j!
f̂ (j) (z) =

1

2πi

∮

Cz

f̂ (t)

(t− z)j+1
dt . (6.4)

Elementary but somewhat tedious arguments lead to the estimates

3

8

√
1 + z2 ≤

∣∣∣f̂ (t)
∣∣∣ ≤

√
13

2

√
1 + z2 , for t ∈ Cz , (6.5)

and using this in (6.4) yields

∣∣∣f (j) (z)
∣∣∣ ≤

√
13

4
j! 2j+1

{√
ξ2 + z2

}1−j
. (6.6)

To estimate the derivatives of g, let ĝ (z) := ln
(
1 + f̂ (z)

)
and observe that, for j ≥ 1,

{
∂jg/∂zj

}
(ξ, z) =

ξ1−j ĝ(j) (z/ξ) . Now, to estimate ĝ(j), for j ≥ 1, we shall apply (6.4) with f̂ replaced by ĝ′. To do this note
that, for t ∈ Cz,

∣∣ĝ′ (t)
∣∣ =

∣∣∣∣∣

(
t

f̂ (t)

)(
1

1 + f̂ (t)

)∣∣∣∣∣ ≤ |t− z| + |z|
|f̂(t)|

1

|1 + f̂ (t) |
≤ 4∣∣∣1 + f̂ (t)

∣∣∣
,
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(where the last inequality follows from (6.5)). Since Re f̂ (t) > 0 for all t ∈ Cz, we have |1 + f̂(t)| ≥ |f̂(t)|
and hence (using also the left-hand side of (6.5)),

∣∣ĝ′ (t)
∣∣ ≤ 4

|f (t)| ≤ 32

3
√

1 + z2
.

Using this in (6.4), with f̂ replaced by ĝ′, we obtain, for j ≥ 1,

∣∣∣ĝ(j) (z)
∣∣∣ ≤ 32

3
(j − 1)! 2j−1

{√
1 + z2

}−j
.

For the original function g this implies

∣∣{∂jg/∂zj
}

(ξ, z)
∣∣ ≤ 32

3
(j − 1)! 2j−1 |ξ|

{√
ξ2 + z2

}−j
, for j ≥ 1 . (6.7)

The required result for ξ 6= 0 now follows on collection of (6.6) and (6.7). The result for ξ = 0 is trivial
since then κ(0, z) = |z|.

The bounds proved in Lemma 6.2 can now be used to bound the error in polynomial approximation of κ.

Lemma 6.3 Let −∞ < a < b <∞ and suppose y 6∈ [a, b]. Then, for any ξ ∈ R and any m ≥ 1, the function
κ (ξ, · − y) can be interpolated on [a, b] by an m-th order Chebyshev polynomial κ̃ (ξ, · − y) with error bounded
by

‖κ(ξ, · − y) − κ̃(ξ, · − y)‖L∞([a,b]) ≤ C|ξ| (m+ 1)2 (1 + η)

(
1 +

1

η

)−m−1

,

where C is an absolute constant and η = b−a
dist(y,I) .

Proof. We apply [1, Theorem 3.2] where the constants Cu, γu appearing there are estimated using Lemma
6.2.

Theorem 6.4 Let ([αt, βt] × [A,B], [αs, βs] × [A′, B′]) the domain corresponding to an ηaniso-admissible
block cluster with respect to (3.10). The integrated kernel kad

b : [A,B] × [A′, B′] → R (see (3.11)) can be
approximated by an m-th order Chebyshev interpolation k̃ad

b with error bounded by

|kad
b − k̃ad

b |[A,B]×[A′,B′],∞ . (m+ 1)2(1 + ηaniso)(1 +
1

ηaniso
)−m−1,

Proof. From Lemma 6.3 we get a bound on the interpolation error for each of the four functions on the
right-hand side of (6.2). Each of the functions is of the form considered in in Lemma 6.3 where the parameter
ξ ∈ {βt −αs, βt −βs, αt −αs, αt −βs}. We can trivially bound |ξ| ≤ diam Γ. Hence, the assertion is a direct
consequence of Lemma 6.3.

6.2 General Polyhedral Domains

The key idea of the anisotropic panel clustering relies on the analytic integration of pairs of stretched panels.
In the previous section, the relevant antiderivatives of the kernel function have been developed and analysed
for the special case of the screen mesh and piecewise constant shape functions.

In this section, we will present the antiderivatives of the kernel function for general polyhedral domains.
We restrict to piecewise constant elements in order not to overload this paper with technicalities. The
generalisation to higher order elements is straightforward because the antiderivatives of the kernel function
can be computed analytically also for this case and the resulting integrated kernel has analogous analyticity
properties as the one for piecewise constant elements.
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We consider pairs of panels which are trapezias of the following form. By a suitable translation and
rotation of the coordinate system we may assume that one panel has the form

t =
{
(x1, x2, 0) ∈ R

3 | At ≤ x2 ≤ Bt and αt (x2) ≤ x1 ≤ βt (x2)
}
,

where 0 ≤ At < Bt are constants and αt, βt are affine functions which satisfy αt (x2) < βt (x2) for all
0 ≤ x2 ≤ Bt and αt (0) = 0. The second trapezia is described by

s = {(w1, w2 cosϕ,w2 sinϕ)⊺ | As ≤ w2 ≤ Bs ∧ αs (w2) ≤ w1 ≤ βs (w2)} .

Again, 0 ≤ As < Bs are constants and αs, βs are affine functions which satisfy αs (w2) < β2 (w2) for all
0 ≤ w2 ≤ BS . The compatibility conditions are αs (0) = αt (0) = 0 and βs (0) = βt (0). The angle ϕ ∈ [0, 2π[
is fixed and denotes the angle between t and s with respect to the x1−axes. The antiderivative of the single
layer kernel is given by

kad
b (x2, y2) =

1

4π

∫ βs(y2)

αs(y2)

∫ βt(x2)

αt(x2)

1√
(x1 − w1)

2 + z2

dx1dw1,

where z = z (x2, y2) =
√

(x2 − y2 cosϕ)2 + (y2 sinϕ)2. Explicit calculations yield (cf. Lemma 6.1) in

kad
b (x2, y2) = κb (z, d)|αs(y2)−βt(x2)

d=αs(y2)−αt(x2) − κb (z, d)|βs(y2)−βt(x2)
d=βs(y2)−αt(x2)

(6.8)

where κb is as in Lemma 6.1.

Remark 6.5 The qualitative analysis of kad
b can be developed along the same lines as for the screen problem.

However, the analysis is more subtle since we can neither assume Bs < At nor Bt < As and the integration
bounds in (6.8) have to be taken into account.

7 Numerical Experiments

In this section we consider the model problem from Example 2.4 for three different grading parameters
g ∈ {1, 3, 5} and an increasing number N of panels, where N = 9n2. We construct the cluster tree TI by
geometrically regular clustering as was introduced in Section 3.1, with minimal size nmin = 4. The block
cluster tree TI×I and corresponding matrix partition is based either on the isotropic admissibility alone
or, additionally, on the anisotropic admissibility condition, both with parameters ηiso = ηaniso = 3. For
the isotropic admissibility condition we expect the number of nearfield entries to be at least N3/2−1/g, cf.
Example 3.6.

In the first numerical test we use the isotropic admissibility condition and a blockwise rank of k = 1 for
all farfield blocks (for a larger rank k > 1 one has to multiply the respective numbers in the column “Far”
in Table 1 by k). We measure the storage requirements in kilobyte per degree of freedom, separately for the
nearfield part (isotropically inadmissible leaves of the block cluster tree) and the farfield part (isotropically
admissible leaves of the block cluster tree). In Table 1 the results are reported along with the sparsity
constant Csp from the (theoretical) complexity estimates. The column “Near” contains the nearfield stor-
age requirements in kilobytes per degree of freedom and the column “Far” the respective farfield storage
requirements. We observe an increase of the nearfield part and the unboundedness of the sparsity constant
Csp for g > 1 as n → ∞. since the columns “Far” grow with O(logN), this shows that the far field part of
the representation is growing with O(N logN).

For the second numerical test we employ the combined isotropic and anisotropic admissibility conditions
and measure the storage requirements in kilobyte per degree of freedom, separately for the nearfield part
(isotropically and anisotropically inadmissible leaves of the block cluster tree) and the farfield part (isotrop-
ically or anisotropically admissible leaves of the block cluster tree). The results in Table 2 confirm the
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g = 1 g = 3 g = 5
n Near Far Csp Near Far Csp Near Far Csp

100 0.6 1.7 24 0.7 1.6 30 1.0 1.5 30
200 0.6 2.0 24 0.8 2.0 30 1.3 1.9 30
400 0.6 2.3 24 0.8 2.3 36 1.7 2.2 42
800 0.6 2.6 24 1.0 2.6 48 2.4 2.4 66
1600 0.6 2.9 24 1.1 2.8 72 3.3 2.7 120

Table 1: Matrix storage requirements using isotropic admissibility.

g = 1 g = 3 g = 5
n Near Far Csp Near Far Csp Near Far Csp

100 0.6 1.7 24 0.6 1.7 30 0.8 1.7 30
200 0.6 2.0 24 0.6 2.0 30 0.7 2.1 30
400 0.6 2.3 24 0.6 2.4 30 0.6 2.5 30
800 0.6 2.6 24 0.6 2.7 30 0.6 2.8 30
1600 0.6 2.9 24 0.5 3.0 30 0.6 3.1 30

Table 2: Matrix storage requirements using isotropic and anisotropic admissibility.

theoretical estimates that the storage requirements are O(N logN) and the sparsity constant Csp remains
bounded, independently of g and N .
Acknowledgement. The first and last authors would like to thank the Max-Planck-Institut für Mathe-
matik in den Naturwissenschaften, Leipzig and Universität Zürich for financial support.
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