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Abstract. In this paper we obtain upper and lower bounds on the spectrum of the stiffness matrix arising from a finite
element Galerkin approximation (using nodal basis functions) of a bounded, symmetric bilinear form which is elliptic on a Sobolev
space of real index m ∈ [−1, 1]. The key point is that the finite element mesh is required to be neither quasiuniform nor shape
regular, so that our theory allows anisotropic meshes often used in practice. (However, we assume that the polynomial degree of
the elements is fixed.) Our bounds indicate the ill-conditioning which can arise from anisotropic mesh refinement. In addition
we obtain spectral bounds for the diagonally scaled stiffness matrix, which indicate the improvement provided by this simple
preconditioning. For the special case of boundary integral operators on a 2D screen in R

3, numerical experiments show that
our bounds are sharp. We find that diagonal scaling essentially removes the ill-conditioning due to mesh degeneracy, leading to
the same asymptotic growth in the condition number as arises for a quasi-uniform mesh refinement. Our results thus generalise
earlier work by Bank and Scott (1989) and Ainsworth, McLean and Tran (1999) for the shape-regular case.
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1. Introduction. Edge and corner singularities are characteristic features of solutions to 3D elliptic
boundary value problems and, in both finite element and boundary element methods, are commonly dealt
with by some kind of local mesh refinement. Typically, an edge singularity is strongly anisotropic: the lack
of smoothness occurs only in directions normal to the edge. For this reason, the local mesh refinement should
also be anisotropic, if we are to minimise the number of degrees of freedom used to achieve a sufficiently small
error in, say, the energy norm. Extra refinement is not needed parallel to an edge, except maybe in the vicinity
of a corner. The meshes that result from such local refinement are certainly not quasi-uniform, and usually
even fail to be shape-regular because elements near edges but away from any corner may have a very large
aspect ratio.

In this paper we investigate the influence of such meshes on the condition number of the stiffness matrix
arising in the Galerkin approximation of a class of symmetric elliptic problems. Our general framework includes
as special cases the single layer and the hypersingular boundary integral equations for the Laplacian on the
surface of a 3D Lipschitz domain or on a Lipschitz screen as well as the Dirichlet problem for second-order
symmetric elliptic PDEs. We obtain general bounds for the spectrum of the resulting Galerkin matrix in terms
of quantities which depend on the geometry of the elements and the particular basis functions utilised.

In addition we study in detail two model problems – the weakly singular and hypersingular equations for
the Laplacian on a rectangular screen, discretised using classical tensor-product power-graded meshes. For
these model problems our general estimates yield explicit bounds in terms of the number of degrees of freedom
and the strength of the power grading. We show by numerical experiments that our estimates are sharp and,
moreover, exhibit a strong increase in the condition number as the maximum aspect ratio of the elements
increases.

These results have practical implications for the performance of iterative techniques such as conjugate
gradients, which are often used as solvers for the dense linear systems which arise in these methods (usually
combined with a fast matrix-vector multiplication such as Fast Multipole [12] or Panel-Clustering [8]). Efficient
solvers require effective preconditioners and as a first step in this direction we also analyse in detail the use
of diagonal scaling. We obtain general estimates for the spectrum of the diagonally scaled matrix and again
investigate this in fine detail for the special cases of the model problems mentioned above.

Throughout the paper Γ will denote either a bounded, d-dimensional Lipschitz surface in R
d+1, for d = 2,

or else a bounded Lipschitz domain in R
d, for d = 2 or 3. In the former case, the surface Γ may be open or

closed. B will denote a bounded and symmetric bilinear form such that, for some Sobolev index m satisfying
|m| ≤ 1, B : H̃m(Γ) × H̃m(Γ) → R , and

c‖v‖2
eHm(Γ)

≤ B(v, v) ≤ C‖v‖2
eHm(Γ)

for all v ∈ H̃m(Γ), (1.1)
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where c and C are positive constants. Thus the energy space for B is equivalent to the Sobolev space H̃m(Γ).
(Here we are working with standard Sobolev spaces on Γ, see §3 for more detail.)

We shall consider approximations of the following variational problem: find u ∈ H̃m(Γ) such that

B(u, v) = 〈f, v〉Γ for all v ∈ H̃m(Γ), (1.2)

where, with dσ denoting the usual surface element on Γ,

〈f, v〉Γ =

∫

Γ

fv dσ.

By the Lax–Milgram Lemma, (1.2) has a unique solution u ∈ H̃m(Γ) for each f ∈ H−m(Γ).
Within this abstract framework we can treat not only some boundary element methods, in particular

with m = ±1/2, but also finite element methods for symmetric H1 elliptic PDEs with homogeneous Dirichlet
boundary conditions.

To approximate the solution u of (1.2), we introduce a finite dimensional subspace X ⊆ H̃m(Γ) and then
apply Galerkin’s method, seeking uX ∈ X such that

B(uX , v) = 〈f, v〉Γ for all v ∈ X . (1.3)

In this paper we are concerned only with the h-version of the finite element method in which X is a space of
piecewise polynomials of fixed degree with respect to a family of increasingly refined partitions (or meshes)
{P} on Γ. The partition P contains elements K ∈ P which have diameter hK and diameter of largest inscribed
ball ρK . We will introduce a basis for X consisting of nodal basis functions {φj : j ∈ N} where N is a suitable
index set with cardinality N . We will define the allowable partitions, elements and basis functions more
precisely in §3. Writing uX =

∑
k∈N αkφk, inserting into (1.3) and choosing v = φj for each j ∈ N leads to

the N ×N linear system

Bα = f , (1.4)

with a symmetric positive definite matrix B = [B(φk, φj)], a solution vector α = [αk] and a right-hand side
vector f = [〈f, φj〉].

The conditioning of B in the case of shape-regular mesh refinement (i.e., hK . ρK for all K ∈ P) was
investigated by Ainsworth, McLean and Tran in [1, 2], where the condition number estimate

cond(B) .

(
hmax

hmin

)d−2m

N2|m|/d for 2|m| < d, (1.5)

was proved. Here, hmax = maxK∈P hK and hmin = minK∈P hK . (For matrices B with real spectrum,
cond(B) := λmax(B)/λmin(B), where λmax(B) and λmin(B) denote the largest and smallest eigenvalues
of B, respectively. The symbols . and ' indicate (in)equality up to a hidden constant, independent of the
mesh — see §3.) In the limiting cases 2m = −d and 2m = d an additional logarithmic factor occurs in the
bound (1.5).

For quasi-uniform meshes, hmax ' hmin ' h so the bound (1.5) gives the well-known result that cond(B) =
O(N2|m|/d) = O(h−2|m|). However, this bound deteriorates if the global mesh ratio hmax/hmin becomes large,
and the deterioration is stronger the more negative the Sobolev index m. Fortunately, such additional growth
in the condition number is easily eliminated by diagonal scaling. In fact, let D denote the diagonal matrix
formed from B by setting all the off-diagonal entries to zero, and put

B′ = D−1/2BD−1/2. (1.6)

Then it is shown in [1] that in the shape-regular case we have

cond(D−1B) = cond(B′) . N2|m|/d for 2|m| < d. (1.7)

We remark that B′ = [B(φ′j , φ
′
k)] is just the Galerkin matrix that arises if we scale the nodal basis so that

φ′j = φj/
√
B(φj , φj) has unit energy: B(φ′j , φ

′
j) = 1.

This paper obtains bounds analogous to (1.5) and (1.7) for the case when the {P} is no longer required to
be shape-regular, and each partition P may contain elements K for which the aspect ratio hK/ρK approaches
infinity as the mesh is refined.
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In particular we show that in the case of the weakly singular and hypersingular boundary integral operators
(and except possibly for some logarithmic factors), diagonal scaling removes the ill-conditioning produced by
the high aspect ratios, restoring the rate of growth of the condition number (in terms of the number of degrees
of freedom) to essentially what it would be for a quasi-uniform mesh with the same number of degrees of
freedom.

We remark that our results not only generalise the results [1, 2] to more general meshes, but they also
generalise some of the earlier results of Bank and Scott [3], who obtained the analogous result for H 1 finite
elements and shape-regular mesh sequences.

The layout of this paper is as follows. In §2 we motivate the theory by describing the results for the
weakly singular and hypersingular operators in detail, without proofs. In §3 we set the theoretical scene by
describing the class of finite (boundary) elements which we shall consider (which allow degenerate meshes),
and we introduce the corresponding nodal bases. A key step in the theory in [1, 2] is the proving of estimates
for Sobolev norms of nodal basis functions. In §4 we extend these estimates to the case of non-shape regular
meshes. Here we make essential use of recently derived inverse estimates for finite element functions on
anisotropic meshes [7]. In §5 we obtain general bounds on the spectra of B and B ′ in terms of the geometry
of the elements and the Sobolev norms of the nodal basis functions. For the case of power graded meshes and
the weakly singular and hypersingular operators these lead to quantitative spectral estimates which are tested
in the numerical experiments in §6. These eperiments show that the results for B ′ are not completely sharp.
Sharper results for special cases, which explain the numerical results, are proved in §7. Finally, §8 presents
some additional numerical results using a more complicated family of meshes.

2. Examples.

2.1. Two integral equations. The weakly-singular (or single-layer) boundary integral equation:

1

4π

∫

Γ

u(y)

|x− y| dσy = f(x) for x ∈ Γ, (2.1)

arises, for example, in the solution of the Dirichlet problem for Laplace’s equation in the region exterior to Γ.
This equation (2.1) may be written in the form (1.2), with

B(u, v) =
1

4π

∫∫

Γ×Γ

u(y)v(x)

|x− y| dσx dσy . (2.2)

Then B satisfies the norm equivalence (1.1) for m = −1/2.
The hypersingular integral equation,

− 1

4π

∫

Γ

(
∂

∂νx

∂

∂νy

1

|x− y|

)
u(y) dσy = f(x) for x ∈ Γ, (2.3)

arises, for example, in the solution of the Neumann problem for Laplace’s equation. (Here ∂/∂νx denotes the
normal derivative at x ∈ Γ and the integral is defined as the finite part integral in the sense of Hadamard.)
The integration by parts procedure of Nedelec [10], [9, Theorem 9.15] allows us to write the associated bilinear
form as:

B(u, v) =
1

4π

∫∫

Γ×Γ

curlΓu(x) · curlΓv(y)

|x− y| dσx dσy , (2.4)

where curlΓ denotes the surface curl operator. The norm equivalence (1.1) holds for m = +1/2. If the
surface Γ is flat then curlΓ can be replaced by the 2D gradient operator ∇.

It is well-known that the solutions of equations (2.1) and (2.3) in general exhibit singular behaviour near
the edges and corners of Γ. In particular near the interior of an edge, the solution u of (2.1) typically has a
singularity of order O(ρα−1) as ρ→ 0, where ρ is the distance of a point from the edge and α > 1/2 depends
on the angle subtended by the boundary Γ near the edge. The solution of equation (2.3) typically has a
singularity of order O(ρα). More complicated behaviour appears near corners. The full detail is well-known,
see, e.g. [4, 5, 11].

2.2. Power-graded meshes. For the h-version of the boundary integral method, it is common to ap-
proximate (2.1) and (2.3) using power graded meshes. To describe these, first consider the special case of a
flat, square screen

Γ = {x ∈ R
3 : 0 < x1 < 1, 0 < x2 < 1, x3 = 0 }, (2.5)
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and think of Γ as a subset of R
2 by writing x = (x1, x2) = (x1, x2, 0) for x ∈ Γ. Choose a grading exponent

β ≥ 1 and define a mesh on the interval (0, 1) by

tj =





1

2

(
2j

n

)β

if 0 ≤ j ≤ n/2,

1 − tn−j if n/2 < j ≤ n.

(2.6)

For β = 1 the mesh is uniform, but as β increases from 1, the points are more concentrated at each end of the
interval. The length ∆tj = tj − tj−1 of the jth interval satisfies

∆tj ' 1

n

(
j

n

)β−1

' ∆tn−j for 1 ≤ j ≤ n/2. (2.7)

We construct the corresponding product mesh with n2 elements on Γ with vertices

t(j1,j2) = (tj1 , tj2) for 0 ≤ j1 ≤ n and 0 ≤ j2 ≤ n. (2.8)

Elements K near any corner are shape-regular with hK ' (1/n)β ' ρK . Away from the boundary they
are also shape-regular with hK ' 1/n ' ρK . However, near the middle of an edge we have hK ' 1/n and
ρK ' (1/n)β, so if β > 1 then degeneracy occurs with the maximum aspect ratio for the elements growing
like nβ−1; see Figure 2.1. This construction can be generalised to other polyhedral surfaces, see, e.g. [11, 5]
and Example 5.5 below.

Fig. 2.1. Power-graded tensor-product mesh with β = 3 and N = 142 elements.

2.3. Condition number estimates. As an illustration of the results which we shall prove later in this
paper, let us suppose we apply the Galerkin method to the weakly singular equation (2.1), with Γ given by

(2.5) and with the subspace X ⊂ H̃−1/2(Γ) chosen to be the space of piecewise-constant functions on the
mesh (2.8). The dimension of X is N = n2. In Theorems 5.7 and 7.4 we will prove that in this case the
Galerkin matrix B satisfies the spectral bounds λmax(B) . N−1 and λmin(B) & N−3β/2, whereas the
diagonally-scaled Galerkin matrix B′ satisfies

λmax(B
′) . N1/2 ×





1 if 1 ≤ β < 2,

(1 + logN)1/2 if β = 2,

(1 + logN)2 if β > 2,

and λmin(B′) &

{
1 if β = 1,

(1 + logN)−1 if β > 1.

Hence, cond(B) grows like N (3β/2)−1 whereas cond(B′) essentially grows like N1/2, which is the rate of growth
in the case of shape-regular meshes.

On the other hand, suppose we solve (2.3), with Γ given by (2.5) and with X ⊂ H̃1/2(Γ) chosen to be the
space of continuous piecewise-bilinear functions on the mesh (2.8) which vanish at the boundary of Γ. The
dimension of X is N = (n− 1)2 = O(n2). In Theorems 5.8 and 7.5, we shall prove that

λmax(B) . N−1/2 and λmin(B) &






N−1, for 1 ≤ β < 2,

N−1(1 + logN)−1, for β = 2,

N−β/2, for β > 2,
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whereas B′ satisfies

λmax(B
′) . 1 and λmin(B′) & N−1/2 ×





1, for 1 ≤ β < 2,

(1 + logN)−1/2, for β = 2,

(1 + logN)−2, for β > 2.

Thus, in this case the condition number of B grows like N (β−1)/2 (for β > 2), whereas the condition number of
B′ again essentially grows only like N 1/2 (for any β ≥ 1), which is again the rate of growth in the shape-regular
case.

3. General Framework. In this section we set up the theoretical apparatus in which the general spectral
estimates of §5 will be proved. Recall that Γ denotes either a bounded (open or closed) d-dimensional Lipschitz
surface in R

d+1, for d = 2, or else a bounded Lipschitz domain in R
d, for d = 2 or 3.

We define the Sobolev spaces Hs(Γ), H̃s(Γ), |s| ≤ 1 in the usual way; see, for example, [9] for details. In

particular, when Γ is a Lipschitz domain or an open Lipschitz surface, u ∈ H̃1(Γ) implies that u has vanishing

trace on the boundary of Γ. For 0 < s < 1, H̃s(Γ) interpolates between L2(Γ) and H̃1(Γ). In any case,

H−s(Γ) is the dual of H̃s(Γ) and H̃−s(Γ) is the dual of Hs(Γ), for all |s| ≤ 1. When Γ is a closed surface,

H̃s(Γ) = Hs(Γ) for all |s| ≤ 1. (Higher order Sobolev spaces can be defined on domains and on smooth enough
surfaces, but we do not need these here.)

In what follows we will also be interested in Sobolev norms of various functions defined over subdomains
Γ̂ ⊂ Γ. Since different equivalent norms for Hs(Γ̂) or H̃s(Γ̂) might scale differently with the size of Γ̂, we
follow the notation used in [1] and write |||u|||Hs(Γ̂) and |||u||| eHs(Γ̂) to indicate the specific norms obtained for

|s| ≤ 1 by real interpolation and duality, starting from the usual norm in L2(Γ̂) and the Sobolev norms

|||u|||2
H1(Γ̂)

= ‖u‖2
L2(Γ̂)

+ |u|2
H1(Γ̂)

and |||u|||2eH1(Γ̂)
= |u|2

H1(Γ̂)
=
∑

|α|=1

‖∂αu‖2
L2(Γ̂)

.

Note that | · |H1(Γ̂) is only a seminorm on H1(Γ̂) but is a norm on H̃1(Γ̂). (The distinction between ‖ · ‖Hs(Γ̂)

and ||| · |||Hs(Γ̂) is significant only when Γ̂ is a proper subset of Γ. In what follows we will freely interchange

‖ · ‖Hs(Γ) and ||| · |||Hs(Γ).)
For later use, we recall [11, Lemma 3.2], [1, Theorem 4.1]: if Γ1, Γ2, . . . , ΓN is a partitioning of a bounded

Lipschitz domain Γ into non-overlapping Lipschitz domains, then for |s| ≤ 1,

|||v|||2eHs(Γ)
≤

N∑

j=1

|||v|||2eHs(Γj)
and

N∑

j=1

|||u|||2Hs(Γj)
≤ |||u|||2Hs(Γ) . (3.1)

We also note that (see [1, (4.1)])

‖u‖Hs(Γ) . ‖u‖ eHs(Γ) if u ∈ H̃s(Γ) ∩ L2(Γ), for all |s| ≤ 1, (3.2)

and that [9, p. 320]

|||v||| eHs(Γ̂) . |||v|||1−s

L2(Γ̂)
|||v|||seH1(Γ̂)

and |||v||| eH−s(Γ̂) . |||v|||1−s

L2(Γ̂)
|||v|||seH−1(Γ̂)

for 0 < s < 1. (3.3)

As mentioned in §1, we will be considering a family of partitions {P} of Γ. Each partition P consists
of relatively open, pairwise-disjoint finite elements K ⊂ Γ with the property Γ = ∪{K : K ∈ P}. For each
K ∈ P , hK denotes its diameter and ρK the diameter of the largest sphere whose intersection with Γ lies
entirely inside K. Also, for any measurable subset S of Γ, |S| denotes its d-dimensional measure.

In order to impose a simple geometric character on the mesh P , we assume that each K ∈ P is diffeomor-
phic to a simple reference element. More precisely, let σ̂d denote the unit simplex and κ̂d = [0, 1]d the unit
cube in R

d. Thus, σ̂2 is the triangle with vertices (0, 0), (1, 0), (0, 1) and σ̂3 is the tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

We assume that for each K ∈ P , there exists a reference element K̂ = σ̂d or κ̂d and a bijective map
χK : K̂ → K, with both χK and χ−1

K smooth. (Here, for simplicity, “smooth” means C∞.) Each element has
vertices and edges, defined to be the images of the vertices and edges of the corresponding unit element under
χK . In the 3D case, the element also has faces, comprising the images of the faces of the unit element. We
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assume each partition is conforming, i.e., for each K, K ′ ∈ P with K 6= K ′, the intersection K ∩K ′ is allowed
to be either empty, a vertex, an edge or (when d = 3) a face of both K and K ′. The requirement that χK is
smooth ensures that edges of Γ (d = 2) and edges of ∂Γ (d = 3) are confined to edges of elements K ∈ P .

Let JK denote the 3 × d Jacobian of χK . Then
∫

K

f(x)dx =

∫

K̂

f(χK(x̂))gK(x̂)dx̂ where gK :=
(
det JT

KJK

)1/2
. (3.4)

In addition to the assumption that χK and χ−1
K are smooth, we also require the following assumption on JK :

Assumption 3.1. There exist positive constants D, E such that

D−1|K|2 ≤ det
(
JK(x̂)T JK(x̂)

)
≤ D|K|2, (3.5a)

Eρ2
K ≤ λmin

(
JK(x̂)TJK(x̂)

)
, (3.5b)

uniformly for x̂ ∈ K̂, K ∈ P, and P ∈ F .
Assumption 3.1 holds, for example, when K is a planar triangle (d = 2) or a tetrahedron (d = 3) and

χK is affine. It is also satisfied by bilinear maps from the unit square to quadrilaterals (d = 2), provided the
quadrilaterals are not too far from parallelograms. These and other examples are explored in [7].

Assumption 3.1 describes the quality of the maps which take the unit element K̂ to each K. We also need
assumptions on how the size and shape of neighbouring elements in our mesh may vary. Here we impose only
very weak local conditions which require the meshes to be neither quasi-uniform nor shape-regular. In addition,
we need a uniform bound on the number of elements that touch the ith node xi.

Assumption 3.2. There exist positive constants F,G,H and an integer M such that for all P ∈ F ,

hK ≤ F hK′ , ρK ≤ G ρK′ , |K| ≤ H |K ′| , for all K,K ′ ∈ P with K ∩K ′ 6= ∅, (3.6a)

and also max
i∈N

#{K ∈ P : xi ∈ K} ≤ M . (3.6b)

Note that condition (3.6a) requires that hK and ρK do not vary too rapidly between neighbouring elements.
This allows elements with large aspect ratio, provided their immediate neighbours have a comparable aspect
ratio. It is clear that the power meshes (2.8) satisfy Assumption 3.2.

From now on, if A(P) and B(P) are two mesh-dependent quantities, then the inequality A(P) . B(P) will
mean that there is a constant C independent of P , such that A(P) ≤ CB(P). (C may depend on D,E, F,G
or M .) Also the notation A(P) ' B(P) will mean that A(P) . B(P) and B(P) . A(P).

For an integer ` ≥ 0 and a reference element K̂ ∈ {σ̂d, κ̂d}, we define

P
`(K̂) =

{
polynomials of total degree ≤ ` on K̂ if K̂ = σ̂d,

polynomials of coordinate degree ≤ ` on K̂ if K̂ = κ̂d,

and the finite element spaces

S`
0(P) = {u ∈ L∞(Γ) : u ◦ χK ∈ P

`(K̂),K ∈ P} for ` ≥ 0,

S`
1(P) = {u ∈ C0(Γ) : u ◦ χK ∈ P

`(K̂),K ∈ P } for ` ≥ 1.

Finally we introduce suitable bases for these spaces. In this paper we consider standard nodal bases defined

as follows. Let d(`) denote the dimension of P
`(K̂) and choose a set of nodes {x̂p : p = 1, . . . , d(`)} ⊂ K̂

with the property that each û ∈ P̂
`(K̂) is uniquely determined by its values at the x̂p. Then there are basis

functions {φ̂p , p = 1, . . . , d(`)} with the property φ̂p(x̂q) = δp,q. From these we can define basis functions on

the open set K (implicitly) by φp,K ◦χK = φ̂p. We extend φp,K to K by continuity and then (discontinuously)
to the whole of Γ by zero. If we introduce the nodes xp,K := χK(x̂p) ∈ K then clearly

φp,K(xq,K′ ) = δ(p,K),(q,K′), for p, q = 1, . . . , d(`), K,K ′ ∈ P . (3.7)

The functions

{φp,K : p = 1, . . . d(`), K ∈ P} (3.8)

then constitute a suitable basis of Sm
0 (P). When ` = 0 we have the simple piecewise constant functions, and

the nodes xK = x1,K can be chosen as the centroids of each K.

6



For S`
1(P), we require further that if two elements K and K ′ share a common edge e, then this edge is

parametrised equally from both sides. More precisely, we require that if χ−1
K (e) = ê and χ−1

K′ (e) = ê′ then
there exists an affine mapping γ : ê → ê′ such that χK and χK′ ◦ γ coincide pointwise on ê. We assume
that the points xp,K and xp,K′ restricted to e coincide and that the values of u at these points are sufficient
to determine uniquely u|e on e. (This condition is satisfied in the simplest case when χK and χK′ are both
affine maps.) In this case any u ∈ S`

1(P) is determined uniquely by its values at the set of global nodes
{xp,K : p = 1, . . . , d(`), K ∈ P}, where coincident nodes on the boundary of more than one element now
constitute a single degree of freedom. Denoting this set more abstractly by {xk : k ∈ N} for some suitable
index set of nodes (or degrees of freedom) N , our basis for S`

1(P) is

{φk : k ∈ N} , (3.9)

where φk ∈ S`
1(P) is the unique function satisfying

φk(xk′ ) = δk,k′ for all k, k′ ∈ N . (3.10)

A simple example is the space of the continuous bilinear functions on a mesh of quadilaterals, with nodes
chosen to be the vertices of the elements.

Clearly the basis (3.8) may be written in the abstract form (3.9) by allowing the set N to contain double
indices of the form (p,K). With this notation, (3.10) follows from (3.7). Moreover, in any case,

Γk ⊆
⋃{

K : xk ∈ K
}
, where Γk := suppφk. (3.11)

Throughout the rest of the paper N denotes the cardinality of the nodal set N .

4. Sobolev Norm of a Nodal Basis Function. We now establish some technical estimates needed in
the next section in our proofs of the spectral bounds for B and B ′. For these we need the following notation.
For k ∈ N , define

hk = average of those hK for which xk ∈ K, ρk = average of those ρK for which xk ∈ K,

and note that the second inequality in (3.6a) implies that

min
xk∈K

ρK . ρk . max
xk∈K

ρK for k ∈ N . (4.1)

The following Theorem is closely related to [7, Theorems 3.2 and 3.6].

Theorem 4.1. Let {φk}k∈N be a nodal basis for S`
i (P) ⊂ H̃m(Γ), where i = 0 or 1.

(i) If 0 ≤ m ≤ 1 , then |||φk ||| eHm(Γk) . ρ−m
k ‖φk‖L2(Γk) .

(ii) If −1 ≤ m ≤ 0 then ρ−m
k ‖φk‖L2(Γk) . |||φk |||Hm(Γk) .

Proof. The proof follows the same lines as the proofs of [7, Theorems 3.2 and 3.6], in which the same
result is proved on the whole domain Γ. To get the proof of the present result, one only has to check that
the arguments in [7] remain true if the global norm ||| · ||| eHs(Γ) is replaced by the local norm ||| · ||| eHs(Γk) .

We recall that the latter norm is obtained for s ∈ (0, 1) by interpolation between the norms ‖ · ‖L2(Γk) and
| · |H1(Γk) and then by duality for s ∈ [−1, 0]. Now, following the arguments in [7, Theorem 3.2], it is easily
seen that

|φk|2H1(Γk) =
∑

K∈P
K⊂Γk

∫

K

|∇φk |2 . ρ−2
k

∑

K∈P
K⊂Γk

‖φk‖2
L2(K) = ρ−2

k ‖φk‖2
L2(Γk).

The proof of (i) for m = 1 follows directly and result (i) then follows by interpolation (3.3) .
For (ii), note first that when m ∈ [−1, 0], the definition of the dual space implies

|||φk |||Hm(Γk) ≥
|(φk, w)Γk

|
|||w||| eH−m(Γk)

, (4.2)
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for any w ∈ H̃−m(Γk), not identically zero. The proof is completed by constructing a test function w ∈
H̃−m(Γk) with the properties

|(φk , w)Γk
| & ρ2

k‖φk‖2
L2(Γk) , (4.3)

|||w||| eH−m(Γk) . ρ2+m
k ‖φk‖L2(Γk) . (4.4)

The required construction of w is given in the proof of [7, Theorem 3.6], where the estimates (4.3) and (4.4) with
m = −1 are established (see [7, eqns (3.14), (3.15)] and put α = 0 and k = 1). The proof of (4.4) form ∈ [−1, 0]
is obtained by establishing it for m = 0 and then interpolating with m = −1. To establish (4.4) for m = 0 one
has to look closely at the argument in [7, Thm 3.6]. For any K ∈ P , K ⊂ Γk, it is shown that there exists a

subset t(K) ⊂ K and a function Pt(K) ∈ H̃1(K) such that φk|t(K) is one-signed and such that ‖Pt(K)‖L2(K) '
|t(K)|1/2. The hidden constants in this estimate are independent of k,K and the mesh. Then the w which
satisfies (4.3) and (4.4) with m = −1 is defined as w =

∑
K⊂Γk

ρ2
Ksign(φk|t(K)) infx∈t(K) |φk(x)|Pt(K) . Then

‖w‖2
L2(Γk) =

∑

K⊂Γk

ρ4
K

(
inf

x∈t(K)
|φk(x)|

)2

‖Pt(K)‖2
L2(t(K)) . ρ4

k

∑

K⊂Γk

(
inf

x∈t(K)
|φk(x)|

)2

|t(K)| . ρ4
k‖φk‖2

L2(Γk) ,

as required.

Theorem 4.1 is the key component in the proof of the next result, which in turn is a partial generalisation
of [1, Lemma 4.7] and [1, Theorem 4.8].

Theorem 4.2. Let k ∈ N .
(i) If 1 ≤ p ≤ ∞ then ‖φk‖Lp(Γ) = ‖φk‖Lp(Γk) ' |Γk|1/p .

(ii) If 0 ≤ m ≤ 1 then ‖φk‖2
eHm(Γ)

. |||φk |||2eHm(Γk)
. |Γk|ρ−2m

k .

(iii) If −1 ≤ m ≤ 0 then |Γk|ρ−2m
k . |||φk|||2Hm(Γk) . ‖φk‖2

Hm(Γ) .

(iv) If 0 ≤ 2m < d then ‖φk‖2
Hm(Γ) & |Γk|1−2m/d .

(v) If −d < 2m ≤ 0 then ‖φk‖2
eHm(Γ)

. |Γk|1−2m/d.

Proof. (i) By the definition of φk,

‖φk‖p
Lp(Γk) =

∑

K∈P
K⊂Γk

∫

K

|φk|p.

For a typical K ⊂ Γk, recall (3.4) and write

∫

K

|φk|p =

∫

K̂

|φ̂k|pgK ' |K|
∫

K̂

|φ̂k|p ' |K|, by Assumption 3.1.

Now sum over all elements K ⊂ Γk to obtain the result.
The left-hand inequality in (ii) follows directly from the left-hand inequality in (3.1), while the right-hand

inequality in (ii) follows from part (i) of Theorem 4.1 and part (i) of the present theorem.
Similarly, in part (iii), we use the right-hand inequality in (3.1) and part (ii) of Theorem 4.1, combined

with part (i) of the present theorem.
To prove (iv), we put p = 2d/(d− 2m) ∈ [2,∞) and apply the Sobolev imbedding theorem together with

part (i) above to obtain

‖φk‖2
Hm(Γ) & ‖φk‖2

Lp(Γ) ' |Γk|2/p = |Γk|1−2m/d.

Part (v) follows using a dual imbedding: for q = 2d/(d− 2m) ∈ (1, 2],

‖φk‖2
eHm(Γ)

. ‖φk‖2
Lq(Γ) ' |Γk|2/q = |Γk|1−2m/d.

5. Bounds on the Extremal Eigenvalues. In this section we obtain general bounds on the spectra of
the matrices B and B′ which were defined in (1.4) and (1.6). Since B is symmetric, these may be obtained
by estimating the Rayleigh quotient αT Bα/αT α from above and from below. For a typical v ∈ X we write

v =
∑

k∈N
vk where vk = αkφk and αk = v(xk). (5.1)
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Then, since

αT Bα = B(v, v) ' ‖v‖2
eHm(Γ)

and αT α =
∑

k∈N
v(xk)2,

if we show the bounds

λX

∑

k∈N
v(xk)2 . ‖v‖2

eHm(Γ)
. ΛX

∑

k∈N
v(xk)2 for all v ∈ X , (5.2)

then we have the estimates: λmax(B) . ΛX and λmin(B) & λX .
Similarly, for the diagonally-scaled matrix B′, note that

αT Dα =
∑

k∈N
α2

kB(φk , φk) =
∑

k∈N
B(vk , vk) '

∑

k∈N
‖vk‖2

eHm(Γ)
.

Thus if we can show that

λ′X
∑

k∈N
‖vk‖2

eHm(Γ)
. ‖v‖2

eHm(Γ)
. Λ′

X

∑

k∈N
‖vk‖2

eHm(Γ)
for all v ∈ X , (5.3)

then it will follow that λmax(B
′) . Λ′

X and λmin(B
′) & λ′X .

For each element K ∈ P , let N (K) = { k ∈ N : Γk ∩K 6= ∅ }. Our assumptions on the family of parti-
tions {P} imply that

the cardinality of N (K) for K ∈ P is bounded independently of P (5.4)

and that for each P the index set N may be partitioned into disjoint subsets N1, N2, . . . , NL having the
property

interior(suppφk) ∩ interior(suppφk′ ) = ∅ if k, k′ ∈ N` and k 6= k′, (5.5)

in such a way that L is bounded independently of P .
In Lemmas 5.1 and 5.2 we will obtain bounds on the spectra of B and B ′, some of which involve the

quantities:

Φm,k :=
|Γk|ρ−2m

k

‖φk‖2
eHm(Γ)

, k ∈ N . (5.6)

Simple bounds on Φm,k may be obtained by employing Theorem 4.2 and (3.2) to obtain:

Φm,k . 1 for −1 ≤ m ≤ 0 and Φm,k &
|Γk|2m/d

ρ2m
k

for −d < 2m ≤ 0. (5.7)

Φm,k & 1 for 0 ≤ m ≤ 1 and Φm,k .
|Γk|2m/d

ρ2m
k

for 0 ≤ 2m < d, (5.8)

(Note that in the shape-regular case, (5.8) and (5.7) are sharp estimates, since |Γk|1/d ' hk ' ρk, and so
Φm,k ' 1 for 2|m| < d.)

In the next two lemmas we shall decompose an arbitrary v ∈ X ⊂ H̃m(Γ) as in (5.1).

Lemma 5.1. For −1 ≤ m ≤ 0 and −d < 2m, we have

min
k∈N

|Γk|ρ−2m
k . λmin(B) ≤ λmax(B) .

(
∑

k∈N
|Γk|1−d/2m

)−2m/d

,

min
k∈N

Φm,k . λmin(B
′) ≤ λmax(B

′) .

(
∑

k∈N
|Γk|ρ−d

k

)−2m/d

.
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The lower bounds continue to hold if the hypothesis is weakened to just −1 ≤ m ≤ 0.
Proof. With q = 2d/(d − 2m) ∈ (1, 2], and using the dual Sobolev embedding, we obtain ‖v‖ eHm(Γ) .

‖v‖Lq(Γ). Now, using Hölder’s inequality and property (5.5), we obtain

‖v‖ eHm(Γ) . ‖v‖Lq(Γ) .

L∑

`=1

∥∥∥∥∥
∑

k∈N`

vk

∥∥∥∥∥
Lq(Γ)

.




L∑

`=1

∥∥∥∥∥
∑

k∈N`

vk

∥∥∥∥∥

q

Lq(Γ)




1/q

.

(
∑

k∈N
‖vk‖q

Lq(Γ)

)1/q

. (5.9)

Moreover from Hölder’s inequality with 1/p+ q/2 = 1 and with wk denoting any positive weight, we have

∑

k∈N
‖vk‖q

Lq(Γ) ≤
(∑

k∈N

(
w

q/2
k

)p
)1/p(∑

k∈N

(
w

−q/2
k ‖vk‖q

Lq(Γ)

)2/q
)q/2

.

(∑

k∈N
w

pq/2
k

)1/p(∑

k∈N
w−1

k ‖vk‖2
Lq(Γ)

)q/2

.

Combining this with (5.9), we obtain

‖v‖2
eHm(Γ)

.

(∑

k∈N
w

pq/2
k

)2/(pq) ∑

k∈N
w−1

k ‖vk‖2
Lq(Γ). (5.10)

Note that 2/q = 1 − 2m/d, p = 1 − d/(2m) and pq/2 = −d/(2m). By choosing wk = |Γk|2/q in (5.10) and
applying Theorem 4.2 (i), we obtain

‖v‖2
eHm(Γ)

.

(
∑

k∈N
|Γk|1−d/2m

)−2m/d ∑

k∈N
v(xk)2,

which, together with (5.2) implies the upper bound for λmax(B).
On the other hand, with wk = |Γk|2/q−1ρ2m

k , it follows from Theorem 4.2 (i), (iii) that

w−1
k ‖vk‖2

Lq(Γ) ' v(xk)2|Γk|ρ−2m
k . v(xk)2‖φk‖2

Hm(Γ) = ‖vk‖2
Hm(Γ) .

Since w
pq/2
k = |Γk|p−pq/2(ρ2m

k )pq/2 = |Γk|ρ−d
k , (5.10) leads to

‖v‖2
eHm(Γ)

.

(∑

k∈N
|Γk|ρ−d

k

)−2m/d ∑

k∈N
‖vk‖2

Hm(Γ).

The upper bound for λmax(B
′) follows by (3.2) and (5.3).

Now consider the lower bounds. Given k ∈ N , choose an element K ∈ P such that xk ∈ K. Then, with
v̂ = v ◦ χK , and using equivalence of norms on finite dimensional spaces, we have

v(xk)2 ≤ ‖v‖2
L∞(K) = ‖v̂‖2

L∞(K̂)
' ‖v̂‖2

L2(K̂)
' |K|−1‖v‖2

L2(K) . (5.11)

Moreover using [7, Theorem 3.6, Remark 3.8] applied on the single element K, we obtain
‖v‖L2(K) . ρm

K |||v|||Hm(K). Combining this with (5.11) and using Assumption 3.2, we get

v(xk)2 . |K|−1ρ2m
K |||v|||2Hm(K) . |Γk|−1ρ2m

k |||v|||2Hm(K) . (5.12)

Hence using (5.4) and (3.1),

∑

k∈N
v(xk)2 .

(
max
k∈N

|Γk|−1ρ2m
k

) ∑

K∈P
|||v|||2Hm(K) .

(
max
k∈N

|Γk|−1ρ2m
k

)
‖v‖2

Hm(Γ),

and the lower bound for λmin(B) follows by (3.2). To obtain the lower bound for λmin(B′), we use the
definition (5.6) of Φm,k combined with (5.12) to obtain

‖vk‖2
eHm(Γ)

= v(xk)2‖φk‖2
eHm(Γ)

= Φ−1
m,k

[
v(xk)2|Γk|ρ−2m

k

]
. Φ−1

m,k|||v|||2Hm(K) . (5.13)

Then the required estimate follows by summing over k and using (3.1).
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Lemma 5.2. For 0 ≤ m ≤ 1 and 2m < d, we have

(
∑

k∈N
|Γk|1−d/2m

)−2m/d

. λmin(B) ≤ λmax(B) . max
k∈N

|Γk|ρ−2m
k ,

(
∑

k∈N
|Γk|ρ−d

k

)−2m/d

. λmin(B
′) ≤ λmax(B

′) . max
k∈N

Φm,k .

The upper bounds continue to hold if the hypothesis is weakened to just 0 ≤ m ≤ 1.
Proof. Using the decomposition (5.1) of v, we have

‖v‖2
eHm(Γ)

=

∥∥∥∥
L∑

`=1

∑

k∈N`

vk

∥∥∥∥
2

eHm(Γ)

≤
( L∑

`=1

∥∥∥∥
∑

k∈N`

vk

∥∥∥∥
eHm(Γ)

)2

≤ L

L∑

`=1

∥∥∥∥
∑

k∈N`

vk

∥∥∥∥
2

eHm(Γ)

.
∑

k∈N
|||vk|||2eHm(Γk)

,

(5.14)
where we used the left-hand inequality in (3.1) and the property (5.5). By Theorem 4.2 (ii),

|||vk |||2eHm(Γk)
= v(xk)2|||φk |||2eHm(Γk)

. v(xk)2|Γk|ρ−2m
k . (5.15)

Substituting this into (5.14) yields

‖v‖2
eHm(Γ)

.

(
max
j∈N

|Γj |ρ−2m
j

)∑

k∈N
v(xk)2,

which, recalling (5.2), implies the upper bound for λmax(B).
To obtain the upper bound for λmax(B

′), we use (5.15) to write

|||vk|||2eHm(Γk)
. v(xk)2|Γk|ρ−2m

k = v(xk)2Φm,k‖φk‖2
eHm(Γ)

= Φm,k‖vk‖2
eHm(Γ)

.

Then we combine this with (5.14) and (5.3) to obtain the result.
Now we consider the lower bounds. Let p = 2d/(d − 2m) ∈ [2,∞) so that ‖v‖Lp(Γ) . ‖v‖Hm(Γ). Clearly

v(xk)2 ≤ ‖v‖2
L∞(K) , for some K ∈ P , K ⊆ Γk. Also v ◦χK = v̂, with v̂ ∈ P

`(K̂) and by equivalence of norms
on finite dimensional spaces, combined with Assumptions 3.1 and 3.2, we have

v(xk)2 ≤ ‖v‖2
L∞(K) = ‖v̂‖2

L∞(K̂)
' ‖v̂‖2

Lp(K̂)
' |K|−2/p‖v‖2

Lp(K) . |Γk|−2/p‖v‖2
Lp(Γk) . (5.16)

Hence, by Hölder’s inequality with 2/p+ 1/q = 1,

∑

k∈N
v(xk)2 .

(∑

j∈N

(
|Γj |−2/p

)q
)1/q(∑

k∈N
‖v‖p

Lp(Γk)

)2/p

.

(∑

j∈N
|Γj |−2q/p

)1/q

‖v‖2
Lp(Γ) ,

where we used the property (5.4). Now, since 2/p = 1 − 2m/d we have 1/q = 2m/d and

∑

k∈N
v(xk)2 .

(∑

j∈N
|Γj |1−d/2m

)2m/d

‖v‖2
Hm(Γ),

which, in view of (3.2) and (5.2), proves the lower bound for λmin(B).
To estimate λmin(B′), we use Theorem 4.2 (ii) and (5.16) to obtain

‖vk‖2
eHm(Γ)

= v(xk)2‖φk‖2
eHm(Γ)

. v(xk)2|Γk|ρ−2m
k . |Γk|1−2/pρ−2m

k ‖v‖2
Lp(Γk) . (5.17)

Thus, recalling 1 − 2/p = 2m/d and employing again (5.4),

∑

k∈N
‖vk‖2

eHm(Γ)
.
∑

k∈N
|Γk|2m/dρ−2m

k ‖v‖2
Lp(Γk)

.

(∑

j∈N

(
|Γj |2m/dρ−2m

j

)q
)1/q(∑

k∈N
‖v‖p

Lp(Γk)

)2/p

.

(∑

j∈N
|Γj |ρ−d

j

)2m/d

‖v‖2
Hm(Γ),
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which, again using (3.2) and (5.3), gives the lower bound for λmin(B
′).

Remark 5.3. The left-hand side of the first inequality in Lemma 5.2 and the right-hand side of the
first inequality in Lemma 5.1 should be interpreted as the appropriate limit when m → 0. Observe that these
lemmas reproduce several known results as special cases. For example, putting m = 0, we obtain estimates for
the “mass matrix” corresponding to an operator of order 0:

min
k∈N

|Γk| . λmin(B) ≤ λmax(B) . max
k∈N

|Γk| and 1 . λmin(B
′) ≤ λmax(B

′) . 1 .

These are well-known, at least for the shape-regular case (i.e. |Γk| ∼ ρd
k ∼ hd

k). Moreover in the shape-regular
case for general m and d, it is easy to see that Lemmas 5.2 and 5.1, imply the previously proved estimate (1.7).
Lemmas 5.2 and 5.1 can be combined with (5.8) and (5.7) to obtain general spectral estimates in the non-shape
regular case, in terms of the computable quantities |Γk| and ρk and generic mesh-independent constants. In
what follows we shall illustrate the uses of these estimates for operators of general order m, but (since boundary
integral equations is our main application), we shall restrict this illustration to the case

d = 2 and |Γk| ∼ hkρk , for each k ∈ N . (5.18)

Then we have the following corollary for operators of general order m:
Corollary 5.4. (i) Assume (5.18). For −1 < m ≤ 0,

min
k∈N

(hkρ
1−2m
k ) . λmin(B) ≤ λmax(B) .

(
∑

k∈N
(hkρk)1−1/m

)−m

,

min
k∈N

(hkρ
−1
k )m . λmin(B

′) ≤ λmax(B
′) .

(
∑

k∈N
hkρ

−1
k

)−m

.

(ii) For 0 ≤ m < 1,

(
∑

k∈N
(hkρk)1−1/m

)−m

. λmin(B) ≤ λmax(B) . max
k∈N

(
hkρ

1−2m
k

)
,

(
∑

k∈N
hkρ

−1
k

)−m

. λmin(B′) ≤ λmax(B
′) . max

k∈N

(
hkρ

−1
k

)m
.

The hypersingular and weakly-singular examples considered in §2.1 are then obtained from the special
cases m = 1/2 and m = −1/2. These estimates can be applied to any mesh specified by the user. To illustrate
its use on a typical class class of meshes, let us consider the following example.

Example 5.5. Suppose Γ is a plane convex polygon with perimeter γ. For some fixed δ > 0, let γ‖ be the
inscribed polygon, each of whose edges e‖ is parallel to and a perpendicular distance δ from a corresponding
edge e of γ. To mesh Γ, extend each e‖ in a straight line at each end until it touches γ. For δ sufficiently small,
this subdivides Γ into near-vertex rhombi, near edge trapezia and an inner polygon. For each e, draw n − 1
parallel lines inside Γ, a perpendicular distance (i/n)β from e, for i = 1, . . . , n−1. (The last of these lines is an
extension of e‖.) This defines a mesh of quadrilaterals on each of the rhombi. For each near-edge trapezium,
introduce a quadrilateral mesh by subdividing each of its parallel sides uniformly with n subintervals and draw
straight lines between corresponding points. Finally subdivide the interior polygon Γint with a quasiuniform
mesh with O(n2) (triangular or quadrilateral) elements, whose nodes on γ coincide with the nodes already
specified. (See Figure 5.1.) This mesh has N = O(n2) elements, and the mesh in Figure 2.1 is a particular
case.

Lemma 5.6. For the class of meshes specified in Example 5.5 we have

∑

k∈N
hkρ

−1
k .





N for 1 ≤ β < 2,

N(1 + logN) for β = 2,

Nβ/2 for β > 2,

and
∑

k∈N
(ρkhk)−1 .





N2, for 1 ≤ β < 2,

N2(1 + logN)2, β = 2,

Nβ , for β > 2.

(5.19)

12



PSfrag replacements

e

Γint

e‖

δ

Fig. 5.1. Section of mesh on polygon Γ, depicting two near-vertex rhombi and a near-edge trapezium.

Proof. For the quasiuniform mesh on Γint the required estimates follow from the standard inequalities
ρk & hk & N−1/2. Therefore we only have to consider the near-vertex rhombi and the near-edge trapezia.

Any typical near-vertex rhombus is the image of the unit square [0, 1]2 under an invertible affine map.
Moreover the mesh on any near-vertex rhombus can be obtained by applying this affine map to the tensor
product mesh with vertices

(
(i/n)β , (j/n)β

)
. Without loss of generality, we can estimate the quantities (5.19)

for this unit square because mesh-independent constants are not important. In this case, with tj = (j/n)β we
have ∆tj = tj − tj−1 ' n−1(j/n)β−1 and so using the notation from §2.2, in particular (2.7), we have

∑

k∈N
hkρ

−1
k '

n∑

i=1

i∑

j=1

∆ti
∆tj

'
n∑

i=1

i∑

j=1

(i/n)β−1

(j/n)β−1

= n2
n∑

i=1

(
i

n

)β−1
1

n

i∑

j=1

(
j

n

)1−β
1

n
' n2

∫ 1

1/n

sβ−1

∫ s

1/n

t1−β dt ds ,

from which the left-hand inequality in (5.19) follows (on recalling that N ∼ n2). Similarly,

∑

k∈N
(ρkhk)−1 '

n∑

i=1

n∑

j=1

1

∆ti ∆tj
'

n∑

i=1

i∑

j=1

n2

(
i

n

)1−β(
j

n

)1−β

' n4
n∑

i=1

(
i

n

)1−β
1

n

i∑

j=1

(
j

n

)1−β
1

n
' n4

∫ 1

1/n

s1−β

∫ s

1/n

t1−β dt ds,

from which the right-hand inequality in (5.19) follows.
The meshes on the near-edge trapezia can be obtained as images of the unit square under a non-singular

bilinear map, meshed with the tensor product mesh
(
i/n, (j/n)β

)
and the estimates (5.19) are then obtained

analogously to above.
The following theorems now follow by combining Corollary 5.4 with Lemma 5.6.
Theorem 5.7. Consider the weakly-singular boundary integral equation (2.1) on the polygon Γ discretised

as in Example 5.5. Then for conforming boundary elements of any degree in H̃−1/2(Γ) and with the nodal
basis introduced in §3,

1. the Galerkin matrix B satisfies the spectral bounds λmax(B) . N−1 and λmin(B) & N−3β/2,
2. the diagonally-scaled Galerkin matrix B ′ satisfies

λmax(B
′) .





N1/2 for 1 ≤ β < 2,

N1/2(1 + logN)1/2 for β = 2,

Nβ/4 for β > 2,

and λmin(B
′) & N−(β−1)/4.

Proof. Elementary estimates for the meshes in Example 5.5 yield, for each k ∈ N ,

N−β/2 . ρk ≤ hk . N−1/2 . (5.20)

We apply Corollary 5.4 with m = −1/2. The bounds for λmax(B) and λmin(B) and the lower bound for
λmin(B

′) follow immediately from (5.20), whereas the upper bound for λmax(B
′) follows from Lemma 5.6.
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Theorem 5.8. Consider the hypersingular boundary integral equation (2.3) on the polygonal screen Γ

discretised as in Example 5.5. For conforming boundary elements of any degree in H̃1/2(Γ) and with the nodal
basis introduced in §3,

1. the Galerkin matrix B satisfies the spectral bounds λmax(B) . N−1/2 and

λmin(B) &





N−1, for 1 ≤ β < 2,

N−1(1 + logN)−1, for β = 2,

N−β/2, for β > 2,

2. the diagonally-scaled Galerkin matrix B ′ satisfies λmax(B
′) . N (β−1)/4 and

λmin(B
′) &






N−1/2, for 1 ≤ β < 2,

N−1/2(1 + logN)−1/2, for β = 2,

N−β/4, for β > 2.

Proof. Note that the condition that the finite element space is H̃1/2(Γ)−conforming implies that it must
be chosen from the class {v ∈ S`

1(P) : v|∂Γ = 0}, for some ` ≥ 1. We apply Corollary 5.4 with m = 1/2. The
upper bounds for λmax(B) and λmax(B

′) follow immediately from (5.20), whereas the lower bounds follow
from Lemma 5.6.

6. Numerical Experiments. In this section we report some numerical experiments with the integral
equations from §2 on the square screen (2.5), with the power graded meshes (2.8).

First we consider the weakly-singular equation discretised using piecewise-constant basis functions. For
β = 2 and β = 3, Tables 6.1 and 6.2 show the extremal eigenvalues and the condition numbers of B and
of B′. From one row of the table to the next, the number of subintervals along each axis doubles so the
number of degrees of freedom N increases by a factor of 4. For each of the six quantities under investigation,
the left-hand column shows the quantity itself whereas the right-hand column gives the apparent exponent µ
such that the quantity is proportional to Nµ. (To compute µ, we simply divide the logarithm of the ratio of
successive values by log 4.) The observed exponent values indicate that the estimates of Theorem 5.7 are sharp
for B but not for B′. However, the improved spectral bounds for B′, proved later in Theorem 7.4, appear to
be sharp up to logarithmic factors. We remark that β = 3 gives the optimal convergence rate O(N−3) for the
capacitance of Γ, when piecewise constant elements are used (see, e.g. [6]).

Our second experiment is for the hypersingular equation discretised using continuous piecewise-bilinear
basis functions. Tables 6.3 and 6.4 give our results for β = 2 and β = 3, which indicate that the estimates
in Theorem 5.8 are (essentially) sharp for B but not for B ′. However, the improved spectral bounds for B′,
proved later in Theorem 7.5, appear to be sharp up to logarithmic factors.

The remainder of the paper is devoted to explaining our numerical results for B ′.

7. Sharper Results for Special Cases.

7.1. Improved Spectral Bounds for B′. For each of the model problems of Section 2, the observed
rate of growth for cond(B′) is slower than the rate predicted by the results proved in Section 5 if the mesh
grading is sufficiently strong, more precisely, if β > 2. However, the next lemma leads to bounds that are
sharp to within logarithmic factors for λmax(B

′) (weakly-singular case) and for λmin(B′) (hypersingular case).
Recall that γ denotes the perimeter of the open surface Γ.

Lemma 7.1. Let dk = supx∈Γk
dist(x, γ) and assume that dmin := mink∈N dk is sufficiently small.

1. For the weakly-singular boundary integral equation (2.1) on an open surface discretised with conforming

finite elements of any degree in H̃−1/2(Γ),

λmax(B
′) .

(
log

1

dmin

)2

max
j∈N

dj

ρj
.

2. For the hypersingular boundary integral equation (2.3) on an open surface discretised with conforming

finite elements of any degree in H̃1/2(Γ),

λmin(B′) &

(
log

1

dmin

)−2

min
j∈N

ρj

dj
.
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N λmax(B) λmin(B) cond(B)

64 9.89E-02 -0.896 7.54E-05 -2.991 1.31E+03 2.095

256 2.57E-02 -0.973 1.18E-06 -3.000 2.18E+04 2.026

1024 6.48E-03 -0.993 1.84E-08 -3.000 3.52E+05 2.007

4096 1.62E-03 -0.998 2.88E-10 -3.000 5.64E+06 2.002

16384 4.06E-04 -1.000 4.50E-12 -3.000 9.03E+07 2.000

Theorem 5.7 . N
−1 & N

−3 . N
2

N λmax(B
′) λmin(B

′) cond(B′)

64 7.09E+00 0.477 3.53E-01 -0.060 2.01E+01 0.537

256 1.40E+01 0.492 3.20E-01 -0.071 4.38E+01 0.563

1024 2.79E+01 0.497 2.71E-01 -0.121 1.03E+02 0.618

4096 5.58E+01 0.499 2.31E-01 -0.115 2.42E+02 0.615

16384 1.12E+02 0.500 1.99E-01 -0.105 5.59E+02 0.605

Theorem 5.7 . N
1/2(1 + log N)1/2 & N

−1/4 . N
3/4(1 + log N)1/2

Theorem 7.4 . N
1/2(1 + log N)1/2 & (1 + log N)−1 . N

1/2(1 + log N)3/2

Table 6.1

Weakly singular integral equation (2.1) on the screen (2.5) with β = 2.

N λmax(B) λmin(B) cond(B)

64 1.78E-01 -0.755 1.28E-06 -4.496 1.39E+05 3.741

256 4.90E-02 -0.932 2.50E-09 -4.500 1.96E+07 3.568

1024 1.26E-02 -0.982 4.89E-12 -4.500 2.57E+09 3.518

4096 3.16E-03 -0.995 9.54E-15 -4.500 3.31E+11 3.505

16384 7.91E-04 -0.999 1.86E-17 -4.500 4.25E+13 3.502

Theorem 5.7 . N
−1 & N

−9/2 . N
7/2

N λmax(B
′) λmin(B

′) cond(B′)

64 6.43E+00 0.463 3.25E-01 -0.096 1.98E+01 0.559

256 1.26E+01 0.488 2.45E-01 -0.204 5.16E+01 0.692

1024 2.51E+01 0.496 1.86E-01 -0.200 1.35E+02 0.696

4096 5.02E+01 0.499 1.48E-01 -0.165 3.39E+02 0.663

16384 1.00E+02 0.499 1.22E-01 -0.137 8.21E+02 0.637

Theorem 5.7 . N
3/4 & N

−1/2 . N
5/4

Theorem 7.4 . N
1/2(1 + log N)2 & (1 + log N)−1 . N

1/2(1 + log N)3

Table 6.2

Weakly singular integral equation (2.1) on the screen (2.5) with β = 3.

Proof. First we prove part 2. Let v ∈ X ⊂ H̃1/2(Γ) and decompose v as in (5.1). Taking p = 2 in (5.17)
we have

‖vk‖2
eHm(Γ)

≤ ρ−2m
k ‖v‖2

L2(Γk) for 0 ≤ m ≤ 1 and 0 ≤ 2m < d. (7.1)

Now define w(x) by w(x) = dist(x, γ). It can be shown [9, Lemma 3.32] that

‖vw−s‖2
L2(Γ) =

∫

Γ

w(x)−2sv(x)2 dx .
1

( 1
2 − s)2

‖v‖2
Hs(Γ) for 1

4 ≤ s < 1
2 , (7.2)

where the hidden constant is independent of s ∈ [ 14 ,
1
2 ). Since w(x) . dk for x ∈ Γk, using (7.1) with m = 1/2,

we obtain

‖vk‖2
eH1/2(Γ)

. ρ−1
k ‖v‖2

L2(Γk) . ρ−1
k ‖(dk/w)sv‖2

L2(Γk) =
d2s

k

ρk
‖vw−s‖2

L2(Γk) , s > 0.
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N λmax(B) λmin(B) cond(B)

49 1.00E-01 -0.342 2.27E-02 -0.798 4.41E+00 0.456

225 5.78E-02 -0.397 5.69E-03 -1.000 1.02E+01 0.602

961 3.14E-02 -0.440 1.42E-03 -1.000 2.21E+01 0.560

3969 1.65E-02 -0.465 3.56E-04 -1.000 4.63E+01 0.535

16129 8.49E-03 -0.479 8.89E-05 -1.000 9.54E+01 0.521

Theorem 5.8 . N
−1/2 & N

−1(1 + log N)−1 . N
1/2(1 + log N)

N λmax(B
′) λmin(B

′) cond(B′)

49 1.64E+00 0.156 5.97E-01 0.055 2.74E+00 0.101

225 1.84E+00 0.084 4.28E-01 -0.240 4.29E+00 0.323

961 1.94E+00 0.041 2.18E-01 -0.487 8.92E+00 0.528

3969 1.99E+00 0.018 1.09E-01 -0.497 1.82E+01 0.515

16129 2.02E+00 0.008 5.48E-02 -0.499 3.68E+01 0.508

Theorem 5.8 . N
1/4 & N

−1/2(1 + log N)−1/2 . N
3/4(1 + log N)1/2

Theorem 7.5 . 1 & N
−1/2(1 + log N)−1/2 . N

1/2(1 + log N)1/2

Table 6.3

Hypersingular integral equation (2.3) on the screen (2.5) with β = 2.

N λmax(B) λmin(B) cond(B)

49 1.38E-01 -0.348 1.52E-02 -1.189 9.12E+00 0.840

225 8.47E-02 -0.354 1.90E-03 -1.500 4.47E+01 1.146

961 4.72E-02 -0.422 2.37E-04 -1.500 1.99E+02 1.078

3969 2.51E-02 -0.456 2.96E-05 -1.500 8.46E+02 1.044

16129 1.30E-02 -0.473 3.70E-06 -1.500 3.51E+03 1.027

Theorem 5.8 . N
−1/2 & N

−3/2 . N

N λmax(B
′) λmin(B

′) cond(B′)

49 1.68E+00 0.104 5.40E-01 0.043 3.11E+00 0.061

225 1.87E+00 0.078 4.30E-01 -0.165 4.36E+00 0.243

961 1.96E+00 0.033 2.72E-01 -0.330 7.21E+00 0.363

3969 2.00E+00 0.015 1.37E-01 -0.494 1.46E+01 0.509

16129 2.02E+00 0.006 6.87E-02 -0.498 2.94E+01 0.505

Theorem 5.8 . N
1/2 & N

−1/2(1 + log N)−2 . N(1 + log N)2

Theorem 7.5 . 1 & N
−1/2(1 + log N)−2 . N

1/2(1 + log N)2

Table 6.4

Hypersingular integral equation (2.3) on the screen (2.5) with β = 3.

Hence, using (7.2), we have

∑

k∈N
‖vk‖2

eH1/2(Γ)
.

(
max
j∈N

d2s
j

ρj

)∑

k∈N
‖vw−s‖2

L2(Γk)

.

(
max
j∈N

d2s
j

ρj

)
‖vw−s‖2

L2(Γ) .
1

( 1
2 − s)2

(
max
j∈N

d2s
j

ρj

)
‖v‖2

Hs(Γ) ,

where hidden the constants are independent of s ∈ [ 14 ,
1
2 ). Now with ε := (log 1/dmin)

−1, it follows that

d−2ε
j . 1 for all j ∈ N . Hence putting s = 1

2 − ε, we obtain

∑

k∈N
‖vk‖2

eH1/2(Γ)
.

(
log

1

dmin

)2(
max
j∈N

dj

ρj

)
‖v‖2

H1/2(Γ).

The estimate in part 2 follows at once.

To prove part 1, we apply a duality argument. Suppose 1
4 ≤ s < 1

2 . Then applying Cauchy–Schwarz
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together with (7.2) we obtain

∣∣〈v, ψ〉L2(Γ)

∣∣ =
∣∣〈vws, ψw−s〉L2(Γ)

∣∣ . ‖vws‖L2(Γ)‖ψw−s‖L2(Γ) .
1

1
2 − s

‖vws‖L2(Γ)‖ψ‖Hs(Γ) ,

and hence ‖v‖ eH−s(Γ) . ( 1
2 − s)−1‖vws‖L2(Γ). Recalling (5.1) and (5.4), this implies that

‖v‖2
eH−1/2(Γ)

. ‖v‖2
eH−s(Γ)

. ( 1
2 − s)−2‖vws‖2

L2(Γ) . ( 1
2 − s)−2

∑

k∈N
‖vkw

s‖2
L2(Γ). (7.3)

Taking p = 2 in Theorem 4.2 (i), and then using Theorem 4.2 (iii) and (3.2), we see that

‖vkw
s‖2

L2(Γ) . d2s
k α

2
k‖φk‖2

L2(Γ) '
d2s

k

ρk
α2

k|Γk|ρk

.
d2s

k

ρk
α2

k‖φk‖2
eH−1/2(Γ)

=
d2s

k

ρk
‖vk‖2

eH−1/2(Γ)
, where αk = v(xk) . (7.4)

So, combining (7.3) and (7.4) and putting s = 1
2 − ε with ε = (log 1/dmin)

−1, as above, we obtain

‖v‖2
eH−1/2(Γ)

.

(
log

1

dmin

)2(
max
j∈N

dj

ρj

)∑

k∈N
‖vk‖2

eH−1/2(Γ)
,

which proves part 1.

7.2. Improved bounds for Φm,k. For the rest of the paper, we restrict our attention to piecewise-
constant and continuous piecewise-bilinear basis functions on power-graded tensor-product meshes as defined
in §2.2.

We saw in (5.7) that Φm,k . 1 if −1 ≤ m ≤ 0. The next lemma gives a sharp two-sided bound for the
special case that occurs in our numerical experiments.

Lemma 7.2. For the piecewise-constant nodal basis on a rectangular mesh,

1 & Φ−1/2,k &
1

1 + log(hk/ρk)
.

Proof. We may assume without loss of generality that Γk = [−hk/2, hk/2] × [−ρk/2, ρk/2]. For brevity
we omit the subscript k for the remainder of the proof. Define the 1D piecewise-constant basis function

ψ(x, h) =

{
1 for −h/2 < x < h/2,

0 otherwise,

and write the tensor-product basis function as φ(x) = ψ(x1, h)ψ(x2, ρ). Recalling (5.7), we see that the result
will follow from the upper bound

‖φ‖2
eH−1/2(Γ)

. hρ2

(
1 + log

h

ρ

)
. (7.5)

Denote the 2D Fourier transform of φ by

φ̂(ξ) =

∫

R2

e−i2πξ·xφ(x) dx = ψ̂(ξ1, h)ψ̂(ξ2, ρ),

where ψ̂, the 1D Fourier transform of ψ, is given by

ψ̂(ξ1, h) =

∫ h/2

−h/2

e−i2πξ1x1 dx1 = h sinc(ξ1h), sinc(z) =






sinπz

πz
, z 6= 0,

1, z = 0.
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Note that |ψ̂(ξ, h)| ≤ min(h, |ξ|−1). We have the norm equivalence

‖φ‖2
eH−1/2(Γ)

= ‖φ‖2
eH−1/2(R2)

'
∫

R2

(1 + |ξ|2)−1/2|φ̂(ξ)|2 dξ

=

∫ ∞

−∞
|ψ̂(ξ1, h)|2

∫ ∞

−∞
(1 + ξ21 + ξ22)−1/2|ψ̂(ξ2, ρ)|2 dξ2 dξ1 =: I1 + I2 + I3 + I4 + I5,

with

I1 =

∫

−∞<ξ1<∞
|ξ2|>ρ−1

, I2 =

∫

|ξ1|<h−1

|ξ2|<h−1

, I3 =

∫

|ξ1|<h−1

h−1<|ξ2|<ρ−1

, I4 =

∫

|ξ1|>h−1

|ξ2|<h−1

, I5 =

∫

|ξ1|>h−1

h−1<|ξ2|<ρ−1

.

By Plancherel’s theorem,

I1 ≤
∫ ∞

−∞
|ψ̂(ξ1, h)|2 dξ1

∫

|ξ2|>ρ−1

|ξ2|−1|ψ̂(ξ2, ρ)|2 dξ2 ≤ 2

∫ ∞

−∞
|ψ(x1, h)|2 dx1

∫ ∞

ρ−1

ξ−3
2 dξ2 = hρ2.

Using polar coordinates we find that

I2 ≤
∫ h−1

−h−1

h2

∫ h−1

−h−1

(1 + ξ21 + ξ22)−1/2ρ2 dξ2 dξ1 ≤ h2ρ2

∫ h−1
√

2

0

(1 + r2)−1/22πr dr ≤ 2π
√

2hρ2,

and simple estimation gives

I3 ≤ 4

∫ h−1

0

h2 dξ1

∫ ρ−1

h−1

ξ−1
2 ρ2 dξ2 = 4hρ2

∫ ρ−1

h−1

dξ2
ξ2

= 4hρ2 log
h

ρ
,

I4 ≤ 4

∫ ∞

h−1

ξ−2
1

∫ h−1

0

ξ−1
1 ρ2 dξ2 dξ1 = 4h−1ρ2

∫ ∞

h−1

ξ−3
1 dξ1 = 2hρ2,

I5 ≤ 4

∫ ∞

h−1

ξ−2
1 dξ1

∫ ρ−1

h−1

ξ−1
2 ρ2 dξ2 = 4hρ2 log

h

ρ
.

Lemma 7.3. Let Γ be the square screen (2.5). For the continuous, piecewise-bilinear nodal basis on the
power-graded mesh with vertices defined by (2.8), we have

Φm,k ' 1 for 0 ≤ m ≤ 1.

Proof. Without loss of generality, we may assume that xk is the origin and that Γk = [−h−, h+] ×
[−ρ−, ρ+] with h± ' hk and ρ± ' ρk. We define the 1D continuous, piecewise-linear basis function on the
interval (−h−, h+),

ψ(x, h+, h−) =





1 +
x

h−
for −h− < x < 0,

1 − x

h+
for 0 < x < h+,

0 otherwise,

and write the bilinear basis function on Γk by φ(x) = ψ(x1, h+, h−)ψ(x2, ρ+, ρ−). Recalling (5.8), we see that
the result will follow from the lower bound

‖φ‖2
eHm(Γ)

& hρ1−2m. (7.6)

Since ‖φ‖2
L2(Γ) ' hρ and |φ|2H1(Γ) ' hρ(h−2 + ρ−2), the cases m = 0 and m = 1 are obvious. If 0 < m < 1

then we use the norm equivalence

‖φ‖2
eHm(Γ)

= ‖φ‖2
eHm(R2)

'
∫

R2

(1 + |ξ|2)m|φ̂(ξ)|2 dξ,
18



where

φ̂(ξ) = ψ̂(ξ1, h+, h−)ψ̂(ξ2, ρ+, ρ−) and ψ̂(ξ, h+, h−) =
1

(2πξ)2

{
1 − ei2πξh−

h−
+

1 − e−i2πξh+

h+

}
.

Since (1 + |ξ|2)m ≥ |ξ2|2m we see that

‖φ‖2
eHm(R2)

&

∫

R2

|ξ2|2m|φ̂(ξ)|2 dξ =

∫ ∞

−∞

∣∣ψ̂(ξ1, h+, h−)
∣∣2 dξ1

∫ ∞

−∞
|ξ2|2m

∣∣ψ̂(ξ2, ρ+, ρ−)
∣∣2 dξ2, (7.7)

and by Plancherel’s theorem,

∫ ∞

−∞

∣∣ψ̂(ξ1, h+, h−)
∣∣2 dξ1 =

∫ ∞

−∞

∣∣ψ(x1, h+, h−)
∣∣2 dx1 =

h+ + h−
3

. (7.8)

Now define h = (h+ + h−)/2, ∆h = (h+ − h−)/2, ρ = (ρ+ + ρ−)/2 and ∆ρ = (ρ+ − ρ−)/2, so that
h± = h± ∆h and ρ± = ρ± ∆ρ. Using the substitution ξ2 = t/ρ in (7.7), we see that

‖φ‖2
eHm(R2)

& h

∫ ∞

−∞
|t/ρ|2m

∣∣ψ̂(t/ρ, ρ+, ρ−)
∣∣2 dt
ρ

= hρ1−2m

∫ ∞

−∞
|t|2m

∣∣ρ−1ψ̂(t/ρ, ρ+, ρ−)
∣∣2 dt.

Putting ε = ∆ρ/ρ = (ρ+ − ρ−)/(ρ+ + ρ−) ∈ (−1, 1), a simple calculation gives

ρ−1ψ̂(t/ρ, ρ+, ρ−) = (1 − ε)f+[(1 − ε)t] + (1 + ε)f−[(1 + ε)t] where f±(t) =
1 − e±i2πt

(2πt)2
.

Since f±(t) = ∓i/(2πt) +O(1) as t→ 0 and f±(t) = O(t−2) as t→ ∞, the integral

I(ε) =

∫ ∞

−∞
|t|2m

∣∣ρ−1ψ̂(t/ρ, ρ+, ρ−)
∣∣2 dt

is analytic for |ε| < 1, and (since ρ− = ρ+ = ρ when ε = 0) we have

I(0) =

∫ ∞

−∞
|t|2m

(
sinπt

πt

)4

dt ' 1 for 0 ≤ m ≤ 1.

The lower bound (7.6) follows for 0 < m < 1 because maxk∈N εk → 0 as N → ∞.

7.3. Sharper versions of the Theorems in §5.

Theorem 7.4. Consider the weakly-singular boundary integral equation (2.1) on the square screen (2.5).
Then for piecewise-constant nodal basis functions with the mesh (2.8),

λmax(B
′) . N1/2 ×






1 if 1 ≤ β < 2,

(1 + logN)1/2 if β = 2,

(1 + logN)2 if β > 2,

and

λmin(B′) &

{
1 if β = 1,

(1 + logN)−1 if β > 1.

Proof. Note that dmin (defined in Lemma 7.1) satisfies dmin = n−β ' N−β/2. Note also that

max
k∈N

dk

ρk
= max

1≤j≤n/2

tj
∆tj

' max
1≤j≤n/2

(j/n)β

n−1(j/n)β−1
= max

1≤j≤n/2
j ' n ' N1/2. (7.9)

Hence, from part 1 of Lemma 7.1 we obtain

λmax(B
′) . N1/2(1 + logN)2 for all β ≥ 1.
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We can combine this with Theorem 5.7 to obtain the required bounds on λmax(B
′). The proof is completed

by using Lemmas 5.1 and 7.2 to obtain

λmin(B
′) & min

k∈N
Φ−1/2,k ' 1

1 + log(n−1/n−β)
' 1

1 + (β − 1) logn
'
{

1, for β = 1,

(1 + logN)−1, for β > 1.

Theorem 7.5. Consider the hypersingular boundary integral equation (2.3) on the square screen (2.5).
Then with conforming piecewise bilinear nodal basis functions on the mesh (2.8),

λmax(B
′) . 1 and λmin(B′) & N−1/2 ×





1, for 1 ≤ β < 2,

(1 + logN)−1/2, for β = 2,

(1 + logN)−2, for β > 2.

Proof. Lemmas 5.1 and 7.3 imply that λmax(B
′) . maxk∈N Φ1/2,j . 1. For β > 2 we sharpen the bound

in Theorem 5.8 by using part 2 of Lemma 7.1. In fact, dmin ' n−β ' N−β/2 and, by (7.9), mink∈N ρk/dk '
N−1/2 . Hence λmin(B

′) & N−1/2/(1 + logN)2 , completing the proof.

8. Numerical experiments with a different family of meshes. To conclude, we present some
numerical results for the weakly-singular equation (2.1) over the non-convex, polygonal screen

Γ = (−1, 1)2 \ ([0, 1] × [−1, 0]). (8.1)

The meshes are constructed by a pseudo-adaptive procedure that starts with a uniform mesh and then selec-
tively bisects elements so that the relation between hK , ρK and the distance to the nearest edge or corner is
equivalent to that for a power-graded mesh with a chosen grading exponent β ≥ 1. For simplicity, we grade
only into the edges and vertex of the re-entrant corner, i.e., we ignore the other four edges and five corners.
Figure 8.1 shows a typical mesh. Strictly speaking, our theory does not cover this example because we require
conforming meshes, although in practical terms there is no need to enforce any inter-element continuity con-
dition at the hanging nodes because we use discontinuous (piecewise-constant) nodal basis functions. Tables
8.1 and 8.2 give our numerical results using meshes with β = 2 and β = 3. The asymptotic behaviour of the
extremal eigenvalues and the condition numbers is essentially the same as we observed previously, in Tables
6.1 and 6.2, for simple tensor-product, power-graded meshes on a square screen with the same choices of β.

Fig. 8.1. Anisotropic mesh on non-convex screen, produced by a pseudo-adaptive procedure, N = 488, β = 3
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N λmax(B) λmin(B) cond(B)

73 2.82E-01 9.15E-04 3.08E+02

296 7.15E-02 -0.981 1.43E-05 -2.971 5.00E+03 1.990

1185 1.79E-02 -0.999 2.23E-07 -2.998 8.01E+04 1.999

4743 4.47E-03 -0.999 3.49E-09 -2.999 1.28E+06 1.999

18958 1.12E-03 -1.000 5.46E-11 -3.002 2.05E+07 2.001

Expected . N
−1 & N

−3 . N
2

N λmax(B
′) λmin(B

′) cond(B′)

73 8.40E+00 3.61E-01 2.33E+01

296 1.67E+01 0.491 3.11E-01 -0.106 5.37E+01 0.597

1185 3.33E+01 0.497 2.67E-01 -0.111 1.25E+02 0.608

4743 6.65E+01 0.499 2.30E-01 -0.108 2.89E+02 0.607

18958 1.33E+02 0.500 2.00E-01 -0.101 6.65E+02 0.601

Expected . N
1/2(1 + log N)1/2 & (1 + log N)−1 . N

1/2(1 + log N)3/2

Table 8.1

Weakly singular integral equation (2.1) on the non-convex screen (8.1) with β = 2.

N λmax(B) λmin(B) cond(B)

111 2.81E-01 1.44E-05 1.95E+04

488 6.66E-02 -0.972 2.82E-08 -4.213 2.37E+06 3.241

2017 1.67E-02 -0.976 5.50E-11 -4.396 3.03E+08 3.421

8095 4.21E-03 -0.991 1.07E-13 -4.489 3.92E+10 3.499

Expected . N
−1 & N

−9/2 . N
7/2

N λmax(B
′) λmin(B

′) cond(B′)

111 1.03E+01 2.72E-01 3.78E+01

488 2.12E+01 0.489 2.04E-01 -0.194 1.04E+02 0.683

2017 4.29E+01 0.497 1.60E-01 -0.169 2.67E+02 0.666

8095 8.75E+01 0.498 1.31E-01 -0.145 6.53E+02 0.643

Expected . N
1/2(1 + log N)2 & (1 + log N)−1 . N

1/2(1 + log N)3

Table 8.2

Weakly singular integral equation (2.1) on the non-convex screen (8.1) with β = 3.
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[10] J. C. Nédélec, Integral equations with non-integrable kernels, Integral Equations Operator Theory 4 (1982), 563–572.
[11] T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder — Singularitäten und Approximation mit Ran-
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