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1 Introduction

In this paper we discuss new domain decomposition preconditioners for piece-
wise linear finite element discretisations of boundary-value problems for the
model elliptic problem

−∇ · (A∇u) = f , (1)

in a bounded polygonal or polyhedral domain Ω ⊂ R
d, d = 2 or 3 with suitable

boundary data on the boundary ∂Ω. The tensor A(x) is assumed isotropic
and symmetric positive definite, but may vary with many orders of magnitude
in an unstructured way on Ω. Many examples arise in groundwater flow and
oil reservoir modelling.

Let T h be a conforming shape-regular simplicial mesh on Ω and let Sh(Ω)
denote the space of continuous piecewise linear finite elements on T h. The
finite element discretisation of (1) in Vh (the n-dimensional subspace of func-
tions in Sh(Ω) which vanish on essential boundaries), yields the linear system:

Au = f , (2)

and it is well-known that the conditioning of A worsens when T h is refined
or when the heterogeneity (characterised by the range of A) becomes large.
It is of interest to find solvers for (2) which are robust to changes in the mesh
width h as well as to the heterogeneity.

While there are many papers which solve (2) for “layered media” in which
discontinuities in A are simple interfaces that can be resolved by a coarse
mesh (see e.g. [4, 12] and the references therein), until recently there was no
rigorously justified method for general heterogeneous media. We present here
a summary of some recent papers [6, 7, 10, 11] where a new analysis of domain
decomposition methods for (2) (which have inherent robustness with respect
to h) was presented. This analysis indicates explicitly how subdomains and
coarse spaces should be designed in order to achieve robustness also with re-
spect to heterogeneities. More precisely this analysis introduces new “robust-
ness indicators” (which depend on the choice of subdomains and coarse space
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and in particular depend on the energy of the coarse space basis functions)
and proves that, if these indicators are controlled, then the preconditioner
will be robust. Papers [6, 7] then go on to consider the use of multiscale finite
elements to build coarse spaces for domain decomposition and prove a number
of results which indicate their robustness in cases where standard coarsening
methods fail to be robust. Papers [10, 11] consider aggregation-based coarsen-
ing (as introduced e.g. in [13, 2]) and prove similar results as in the multiscale
finite element case.

The coarse spaces proposed in [6] yield coefficient-dependent prolongation
operators, similar to those which have been tested empirically in the con-
text of (Schur complement based) domain decomposition methods in [3, 5].
The concept of energy-minimising coarse spaces also appears in several pa-
pers on the construction of algebraic multigrid methods [14, 9, 15], but their
behaviour in the presence of heterogeneity is not analysed. The use of mul-
tiscale finite elements as coarseners was also proposed in [1], but again this
was in the Schur-complement context and the analysis depended on classical
periodic homogenisation theory. The analysis in [6] does not require periodic-
ity and does not appeal to homogenisation theory. We are also not aware of
any theoretical results which make explicit the dependency of the condition
number on heterogeneities in A in the case of the aggregation-based coarse
spaces proposed in [10].

Given a finite overlapping open covering of subdomains {Ωi : i = 1, . . . , s}
of Ω, with each Ωi assumed to consist of a union of elements from T h , and
a coarse basis {Φj : j = 1, . . . , N} ⊂ Vh, we study two-level additive Schwarz
preconditioners

M−1
AS =

s
∑

i=0

RiA
−1
i RT

i . (3)

Here, for i = 1, . . . , s, Ri denotes the restriction matrix from freedoms in Ω to
freedoms in Ωi and (R0)j,p = Φj(xp), where xp, p = 1, . . . , n, are the interior
nodes of the fine mesh T h. The matrices Ai are then defined via the Galerkin
product Ai := RiAR

T
i .

For the purposes of exposition we will only describe the theory for scalar A
in (1), i.e. A = α I, and restrict to the case of homogeneous Dirichlet boundary
conditions. For theoretical purposes, we shall also assume that α ≥ 1. This is
no loss of generality, since problem (2) can be scaled by (minx α(x))−1 without
changing its conditioning. Throughout the paper, the notation C . D (for
two quantities C,D) means that C/D is bounded above independently of the
mesh parameters and of the coefficient function α.

2 Coefficient-explicit Schwarz Theory I

The assumptions on the coarse space and on the overlapping subdomains made
in the papers [6, 7] and [10, 11] are different. We start in this section with
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the theory presented in [10, 11]. Although there we only applied the theory to
aggregation-based coarsening, we will show here that it can also be applied in
the case of the multiscale coarsening introduced in [6, 7], leading to a slightly
different condition number bound than the one in [6, 7]. The key assumption
in this section is that the support of each coarse space basis function is fully
contained in at least one subdomain. For details and proofs see [10].

We start with a linearly independent set {Φj : j = 1, . . . , NH} ⊂ Sh(Ω).
This set contains some functions which do note vanish on the boundary so
NH > N . We set ωj = interior (supp{Φj}) with diameter Hj . For theoretical
purposes we assume that the {ωj} form a shape-regular overlapping cover of Ω
and that the overlap between any support ωj and its neighbours is uniformly
of size δj . In addition we make the following assumptions:

(C1) For all j = 1, . . . , NH there is an ij ∈ {1, . . . , s} such that ωj ⊂ Ωij
.

(C2)
∑NH

j=1 Φj(x) = 1, for all x ∈ Ω̄.

(C3) ‖Φj‖L∞(Ω) . 1 .

We assume that the functions Φj are numbered in such a way that Φj ∈ Vh

for all j ≤ N and Φj 6∈ Vh for all j > N . Thus we can denote the coarse space
by V0 = span{Φj : j = 1, . . . , N} and we have V0 ⊂ Vh.

Note that although we have not directly made any assumptions on the
overlap of the subdomains, (C1) implies that the overlap of a subdomain Ωi

and its neighbours is always bounded from below by min{j : ωj⊂Ωi} δj .

It is known (see e.g. [12]) that in order to bound κ(M−1
ASA), we need to

assume some upper bounds on |Φj |
2
H1(Ω) . We take a novel approach here

and introduce a quantity which also reflects how the coarse space handles the
coefficient heterogeneity:

Definition 1. (Coarse space robustness indicator I).

γ∞(α) =
NH
max
j=1

{

δ2j ‖α|∇Φj |
2‖L∞(Ω)

}

.

The quantity γ∞(α) appears in our estimates for the two–level preconditioner
below. Note that, roughly speaking, this robustness indicator is well-behaved
if the Φj have small gradient wherever α is large. The weight δ2i is chosen to
make γ∞(α) . 1 when α = 1.

We can now state one of the main results from [10] (Theorem 3.8):

Theorem 1. Assume that (C1)-(C3) hold true. Then

κ
(

M−1
ASA

)

. γ∞(α)

(

1 +
NH
max
j=1

Hj

δj

)

.

Example 1 (Linear Finite Element Coarsening). In the classical case, i.e. when
{Φj} is the standard nodal basis for the continuous piecewise linear functions
on a coarse simplicial mesh T H , we have δj ∼ Hj and γ∞(α) . maxx∈Ω α(x),
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α̂ κ(M−1

AS
A) γ∞(α)

100 5.2 2
101 9.1 20
102 58.1 200
103 471 2000
104 1821 20000

α̂ κ(M−1

AS
A) γ∞(α)

100 5.2 2
101 5.2 9.5
102 5.2 14.2
103 5.2 14.9
104 5.2 15.0

Table 1. Standard additive Schwarz with linear coarsening (left) and with multiscale
coarsening (right) for h = 512−1 and H = 8h.

and so γ∞(α) . 1 when α ∼ 1. When α(x) → ∞ for some x ∈ Ω then
Theorem 1 suggests that linear coarsening may not be robust anymore. The
numerical results in Table 1 (left) show that this is indeed the case and that
γ∞(α) is a good indicator for the loss of robustness. The results in Table 1
are for Ω = [0, 1]2 and α(x) = α̂ on an “island” in the interior of each coarse
element K ∈ T H a distance O(H) away from ∂K, with α(x) = 1 otherwise
(for a precise description of α see [6, Example 5.1]). Also, there is exactly one
subdomain Ωij

per coarse node xH
j with ωj ⊂ Ωij

(to ensure (C1)).

However, our framework leaves open the possibility of choosing the Φj to
depend on α in such a way that γ∞(α) is still well-behaved. The next two
examples give two possible ways of constructing such Φj .

Example 2 (Aggregation-based Coarsening). Let N = {x1, . . . , xn} be the set
of fine freedoms, and let {Wj : j = 1, . . . , NH} be a non-overlaping partition
of N (i.e. ∪{Wj : j = 1, . . . , NH} = N and Wj ∩ Wj′ = ∅ ∀j 6= j′).
For each j, we define a coefficient vector Φ

j ∈ R
n such that Φj

p = 1, if node

xp ∈ Wj , and Φj
p = 0 otherwise. Let Φj ∈ Sh(Ω) be the linear finite element

function with nodal values Φ
j . Note that although the aggregates Wj are non-

overlapping, the supports ωj of the functions Φj are. The overlap essentially
consists of one layer of fine grid elements and so for quasi-uniform T h we have
δj ∼ h. In [10] (see also [2]) we go on to smooth these functions by using a
simple damped Jacobi smoother. This increases the overlap. However, here
we will only consider the simplest case of no smoothing.

It follows immediately from the above construction that the Φj are linearly
independent and satisfy (C2) and (C3). Therefore, if the covering {Ωi} is
chosen such that (C1) is satisfied, then Theorem 1 implies

κ
(

M−1
ASA

)

. γ∞(α)
NH
max
j=1

Hj

h
. (4)

The Φj have nonzero gradient only in the overlap of ωj and so, pro-
vided α is well-behaved in the overlap, γ∞(α) can be bounded independent of
maxx∈Ω α(x). In [10] we present an algorithm to choose aggregates Wj which
can be proved to satisfy this for certain choices of “binary” coefficient func-
tions α by using the idea of strong connections in A from algebraic multigrid
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(AMG). Given an aggregation “radius” r ∈ N and a threshold for strong con-
nections, roughly speaking each of the aggregates Wj is calculated by finding
the strongly–connected graph r-neighbourhood of a suitably chosen seed node
xH

j ∈ N . The aggregation procedure in [10] uses an advancing front in the
graph induced by A to choose good seed nodes. We refer to [10] for details
and numerical results with binary and random media.

Example 3 (Multiscale Finite Element Coarsening I). Let T H be a shape-
regular mesh of coarse simplices on Ω with a typical element of T H being the
(closed) set K, which we assume to consist of the union of a set of fine grid
elements τ ∈ T h. Also, let {xH

j : j = 1, . . . , NH} be the set of nodes of T H

and let FH denote the set of all (closed) faces of elements in T H . (In the 2D
case “faces” should be interpreted to mean “edges”.) Finally, introduce also
the skeleton Γ = ∪{f : f ∈ FH}, i.e. the set of all faces of the mesh, including
those belonging to the outer boundary ∂Ω.

Here, each of the coarse space basis functions Φj is associated with a node
xH

j of T H . They are obtained by extending (via a discrete harmonic extension
with respect to the original elliptic operator (1)) predetermined boundary
data on the faces which contain xH

j , into the interior of each element K.
To introduce boundary data for each j = 1, . . . , NH , we introduce functions
ψj : Γ → R which are required to be piecewise linear (with respect to the
mesh T h on Γ ) and are required also to satisfy the assumptions:

(M1) ψj(x
H
j′ ) = δj,j′ , j, j′ = 1, . . . , NH ,

(M2) 0 ≤ ψj(x) ≤ 1 , and
∑NH

j=1 ψj(x) = 1 , for all x ∈ Γ ,

(M3) ψj ≡ 0 on all faces f ∈ FH such that xH
j 6∈ f .

Using ψj as boundary data, for each j = 1, . . . , NH , the basis functions
Φj ∈ Sh(Ω), are then defined by discrete α−harmonic extension of ψj into
the interior of each K ∈ T H . That is, for each K ∈ T H , Φj |K ∈ {vh ∈ Sh(K) :
Φj |∂K = ψj |∂K} is such that

∫

K
α∇(Φj |K) · ∇vh = 0 for all vh ∈ Sh

0 (K) (5)

where Sh(K) and Sh
0 (K) are the continuous piecewise linear finite element

spaces with respect to T h restricted to K.
The obvious example of boundary data ψj satisfying (M1)–(M3) are the

standard hat functions on T H restricted to the faces (edges) of the tetrahedron
(triangle) K. However, these are not so appropriate if α varies strongly near
the boundary ∂K. The oscillatory boundary conditions suggested in [8] are
more useful in this case (see [6] for details).

This recipe specifies Φj ∈ Sh(Ω) which can immediately be seen to be
linearly independent and to satisfy the assumptions (C2) and (C3) (see [6]).
Moreover, we have δj ∼ Hj . Therefore, if the covering {Ωi} is chosen such
that (C1) is satisfied, then Theorem 1 implies

κ
(

M−1
ASA

)

. γ∞(α). (6)
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The numerical results in Table 1 (right), obtained for the test problem in-
troduced in Example 1, show that additive Schwarz with multiscale coarsening
is indeed robust even when the coarse mesh does not resolve discontinuities in
α and that our theory accurately predicts this (cf. (6)). For more numerical
results with multiscale coarsening see [6, 7].

3 Coefficient-explicit Schwarz Theory II

In practice, Assumption (C1) may be too restrictive, as it may require quite
generous overlap of the subdomains (e.g. in the case of multiscale coarsening).
The theory in [6, 7] does not require (C1). However, it requires an underlying
coarse mesh and is therefore not as easily applicable to other more general
coarse spaces such as the aggregation-based ones in Example 2. For details
and proofs on this section see [6].

Let T H be a shape-regular coarse mesh as defined in Example 3, and for
every K ∈ T H let HK = diam(K). We will now replace Assumption (C1) by

(C1’) Φj(x
H
j′ ) = δj,j′ , j, j′ = 1, . . . , NH , and supp(Φj) ⊂ ∪{K : xH

j ∈ K}.

This implies that the Φj are linearly independent and that V0 = span{Φj :
j = 1, . . . , N} ⊂ Vh. However, even though we no longer need Assumption
(C1) we do still need a mild assumption on the relative size of the subdomains
and the coarse mesh. For shape-regular subdomains Ωi we can write this as

(C4) HK . diam(Ωi) , for all K ∈ {K : K ∩ Ω̄i 6= ∅} and i = 1, . . . , s,

although we note that in [6] this requirement is generalised to allow highly
anisotropic subdomains such as may arise in the application of mesh partition-
ing software. Note that (C4) does not impose any direct structural relation
between coarse mesh and subdomains.

The condition number estimate in this section separates robustness with
respect to the coarse space from robustness with respect to the overlap-
ping covering. We therefore introduce two robustness indicators. Analogous
to γ∞(α) we first introduce a quantity which reflects how the coarse space
handles the coefficient heterogeneity. However, here we measure the “energy”
of the coarse space basis functions in the L2-norm instead of the L∞-norm.

Definition 2. (Coarse space robustness indicator II).

γ2(α) =
NH
max
j=1

{

H2−d
j |Φj |

2
H1(Ω),α

}

where Hj = diam(ωj) .

The second quantity which we introduce measures in a certain sense the
ability of the subdomains Ωi to handle the coefficient heterogeneity.

Definition 3. (Partitioning robustness indicator).

π(α) = inf
{χi}∈Π({Ωi})

(

s
max
i=1

{

δ2i
∥

∥α|∇χi|
2
∥

∥

L∞(Ω)

})
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where δi is here the overlap for subdomain Ωi and Π({Ωi}) denotes the set of
all partitions of unity {χi} ⊂W 1

∞(Ω) subordinate to the cover {Ωi}.

Roughly speaking, π(α) is well-behaved if there is a partition of unity whose
members have small gradient wherever α is large. The weight δ2i is chosen to
make π(α) . 1 when α = 1.

Using these two robustness indicators and under the assumptions made in
this section we can now state one of the main results from [6] (Theorem 3.9):

Theorem 2. Assume that (C1’) and (C2)-(C4) hold true. Then

κ
(

M−1
ASA

)

. π(α) γ2(1)

(

1 +
s

max
i=1

H(Ωi)

δi

)

+ γ2(α) .

where H(Ωi) = max{K : K∩Ω̄i 6=∅}HK is the local coarse mesh diameter.

Note that, if in addition we assume (C1), this bound does not reduce to the
bound in Theorem 1. The results of Theorems 1 and 2 and the ways in which
they are proved are genuinely different. Since in either case a slightly different
set of robustness indicators is involved they provide two separate tools by
which to establish the robustness of a particular coarse space. We will discuss
this in more detail below.

Example 4 (Multiscale Finite Element Coarsening II). By definition the multi-
scale basis functions Φj constructed in Example 3 also satisfy (C1’). Therefore,
if the covering {Ωi} is chosen such that (C4) is satisfied, then Theorem 2 ap-
plies. As in [10] in the case of aggregation-based coarsening, it is shown in [6]
(under some technical assumptions) that γ2(α) can be bounded independently
of maxx∈Ω α(x). Moreover, the numerical experiments in [6] show that these
bounds are sharp and that the new preconditioner has greatly improved per-
formance over standard preconditioners even in the random coefficient case.

Finally, to compare the bounds in Theorems 1 and 2 in the case of multi-
scale coarsening, let Ωj = ωj , for j = 1, . . . , NH . This implies that δj ∼ H(Ωj)
and so

κ
(

M−1
ASA

)

. π(α) γ2(1) + γ2(α). (7)

However, in this case (C1) also holds true and we can apply Theorem 2 to
obtain κ

(

M−1
ASA

)

. γ∞(α) (cf. (6)). It is not clear which of the two bounds in
(6) and in (7) is sharper. Since the Φj form a partition of unity subordinate to
the covering {Ωj}, we could bound π(α) by γ∞(α) and apply a trivial bound
to γ2(α) to obtain

κ
(

M−1
ASA

)

. γ2(1) γ∞(α). (8)

This would suggest that the bound in (6) is sharper than the one in (7).
However, the inequalities which we used to obtain (8) from (7) are known to
be not sharp in general, leaving open the possibility that (7) may be sharper
for a particular choice of α.

Linear algebra aspects of multiscale coarsening which also reveal a link to
iterative substructuring are considered in [7]. Extensions of the methods and
the theory to multiplicative, hybrid and deflation variants are also in [6, 7].
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