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Description

OpenMath and MathML are two ways of representing mathematical ob-
jects. Semantically, OpenMath is a superset of (content) MathML. The aim
is to build a translator from OpenMath to content MathML, using presen-
tation MathML where necessary as in the example of rank in Section 5.3
on MathML http://www.w3c.org/TR/REC-MathML/chapter5.html. Since
OpenMath is extensible, the translator will need to be. There is no a priori
choice of implementation language. A viva voce examination will be held.

The project report should be no more than 40 pages.

Marking Scheme

Background research 15 α
Analysis of MathML/OpenMath translation 10 α
Design 20 2α
Implementation 25 α
Testing 10
Report and Documentation 15 α
Viva and Demonstration 5

Total 100 6α
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Chapter 1

Introduction

Nearly eight years after the appearance of the World Wide Web, it is still
a difficult medium to use for the transmission of mathematics and scien-
tific material in spite of its success in other areas. Sending mathematics via
e-mail or reading mathematics into a software package from a web page is
not a simple task, depriving the scientific community from a powerful com-
munications tool which is the Internet. Likewise, displaying mathematics
on the Internet in a way that allows editing and reuse has until now been
impossible.

As the Internet continues to grow it is becoming ever more important to
facilitate the exchange of mathematics amongst users and computer algebra
software packages, offering automatic processing of expressions, searching,
editing and reuse.

To overcome these difficulties, various companies and societies have joined
together to produce standards for representing mathematics whilst preserv-
ing mathematical meaning. The World Wide Web Consortium [1] and the
OpenMath society [2] have developed the two leading standards currently
receiving most attention. These are MathML [3] and OpenMath [4] respec-
tively.

The chief purpose of OpenMath is to facilitate consistent communica-
tion of mathematics between mathematical applications. MathML however,
concentrates on displaying mathematics on the web whilst maintaining its
meaning. Both standards are complementary and used together can provide
the opportunity to expand our ability to represent, encode and successfully
communicate mathematical ideas with one another across the Internet.

The primary aim of this project is to understand the differences and
similarities between OpenMath and MathML, to assess their exchangeability
and develop a way of mapping one standard to the other. The main objective
will be to ultimately design and implement an interface running on REDUCE
which will translate OpenMath into MathML and vice versa. This interface
will provide REDUCE with the capability of exchanging mathematics with
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CHAPTER 1. INTRODUCTION 3

other applications as well as displaying output on the World Wide Web and
reading from it, allowing REDUCE to join the MathML/OpenMath trend.

Luis Alvarez Sobreviela OpenMath/MathML Interface



Chapter 2

Literature Review

The notation of mathematics has constantly evolved with the appearance
of new concepts and ideas. Modern mathematical notation is the result of
centuries of refinement. As a result of this, the sophisticated symbols with
which we write mathematics pose certain problems when bringing them onto
printed paper. Publishing mathematics is a difficult task simply because
mathematics do not lend themselves easily to publication.

Recently, the advances in Internet publishing, following the Internet ex-
pansion, have added a new dimension to mathematical publishing. New
problems as well as new requirements must be dealt with. We want the
Internet not only to be a medium for displaying mathematics around the
world, but also a communications tool for transmitting them.

How can we ensure that mathematics published on a web page are
reusable? Editable? The outputs of one application should be displayed
on the Internet in a way humans can understand and other applications can
reuse. But because there is a distinction between presenting mathematical
objects, and transmitting their content, merging both into one notation to
achieve this duality is a non-trivial task.

In order to fully understand the motivations of this project, as well as
appreciating its outcome, it is important to carefully illustrate any related
issues. We will look into the development of mathematical publishing and
how it has evolved with the growth of the Internet. This will permit us to
better understand the need for mathematical representation standards such
as MathML and OpenMath which we shall introduce. Finally we will talk
about the relation between these standards, the existing software supporting
them, and their future.

With such an overview of the current situation, the necessity of a MathML
to OpenMath interface for REDUCE will become clear.
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CHAPTER 2. LITERATURE REVIEW 5

2.1 Mathematical Publishing

Before the foundation of the World Wide Web, encoding of mathemati-
cal documents was already a widespread practice. Back in the days when
computers were starting to become popular, the ASCII character set (and
encodings based on it) was the only widely available encoding scheme. The
restrictions of such a limited symbol set were soon apparent.

In the mid seventies, Donald Knuth developed TEX, from which variants
such as LATEX stemmed. Layout and typesetting of mathematics is extremely
demanding and until now, Donald Knuth’s TEX had been able to address
these difficulties in a successful way, appealing to the scientific community
who has now made it a standard in scientific publishing. TEX has become
the tool of choice for producing scientific and mathematical documents.

Despite its widespread use and ease with which it is authored, TEX
does not preserve mathematical semantic value, making it unpractical for
use in web documents and useless for transmission between applications.
TEX is only concerned with describing the presentation of mathematics, not
the content. Because people are interested in transmitting their ideas and
research via e-mail or web pages it is fundamental that semantic value is
kept.

While TEX is mainly a UNIX based application, PC applications deal-
ing with mathematical encoding have also emerged. Generally these are
equipped with a graphical user interface making them easier to use: Design
Science’s MS Word Equation Editor, FrameMaker, WordPerfect or Scien-
tificWord are a few to name examples. All these applications1 just deal
with displaying mathematics and ignore semantic value. They are usually
vendor specific making them unpractical for use in mathematical web pub-
lishing.

2.2 Mathematics and the Internet Challenge

2.2.1 Html and Mathematics

In the early 1990’s, The World Wide Web Consortium’s Html became the
standard markup language for publishing on the World Wide Web. It has
since evolved and has become an extensible and very powerful means of
representing interactive Internet documents. In terms of representing math-
ematics however, Html has little support.

In the first versions of Html , no support for mathematics was included.
It was not until 1993 that the first intent of embedding mathematics within
Internet documents was attempted in the Html+ draft [5] presented by
the World Wide Web Consortium. Equations were represented directly as

1It is worth noting that PC applications have not had the same success as TEX.
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Html+ using an SGML [8] based notation, inspired by LATEX’s approach.
In 1994, the World Wide Web Consortium went further in mathematics

Internet publishing by presenting the Html 3.0 draft [6] (which later was
officially published as the Html 3.2 [7] specification with a few modifications)
which offered a more comprehensive support. They claimed “Html math is
powerful enough to describe the range of math expressions you can create in
common word processing packages, as well as being suitable for rendering to
speech.”

Nonetheless, both drafts failed because of lack of interest from popular
browser vendors. But even though the mathematical ideas in the Html
3.2 specification were never fully deployed, people started thinking more
carefully about mathematics, and how they could be represented on the
WWW.

In the meantime, while the World Wide Web Consortium and other
societies continued working on developing mathematical support for Internet
documents, other solutions to transmitting mathematics on the web arose.
The lack of a standard approach to uniformly represent mathematics on the
Internet pushed mathematicians and scientists to use a variety of different
techniques to achieve this purpose. Let us give a brief overview of the main
ones.

2.2.2 Embedded Graphics

One way of displaying mathematics on the web is by the use of embedded
graphics inside Html documents. Mathematical equations are represented by
graphical images (e.g. gifs) which all browsers display without difficulties.
Formulae can be viewed in their original rendering, without the browser
requiring additional fonts or external viewing programs.

Nevertheless, these images display low resolutions and printing them re-
sults in poor quality documents. There are also problems with alignment
and sizing. Because graphical images are generally slow to download, doc-
uments might take more time than desired to be rendered. Since we are
only dealing with images, the equations are not editable. No modifications
can be done on them. For the same reasons, they are not reusable, because
semantic value is completely lost.

This method is widespread but not very appreciated. In the Html 3.0
draft, the World Wide Web Consortium specifically states its intention of
helping users avoid the use of inline images to display equations.

This is the approach used by programs such as LATEX2Html [9] or TEX4ht
[13] which can convert LATEX and TEX documents to Html format for direct
insertion into the Internet. LATEX markup is translated into Html while
mathematical equations are converted into graphical images. It is worth
noting however, that there exist programs such as TtM [14] which translate
the mathematical sections directly into MathML presentation markup .

Luis Alvarez Sobreviela OpenMath/MathML Interface
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2.2.3 Graphical Page Display

Another way of approaching the problem is by using graphical page displays.
The page is rendered into a page-description language such as postscript or
PDF. Internet browsers, aided by an external viewer or plug-in can then
display the page in its integrity, including any mathematical formulae within
it. When using this method, documents are displayed with exactly the
same layout as the original documents, which could be TEX documents for
instance. The printing resolution is also maintained at a high quality level.

But using an external viewer or plug-in involves everyone possessing
a copy. A viewer also requires a verbose and large file format including
all the non-standard fonts used. Just in the same way as the embedded
graphics display, any mathematics contained within these documents looses
its semantic value, as well as the possibility to edit it or modify it.

2.3 OpenMath and MathML

These interim solutions have only contributed to the problem by putting in
evidence the need of a consistent standardized methodology for the trans-
mission of mathematics via the World Wide Web. In view of the failure of
existing methods MathML and OpenMath’s2 significance and importance
increased. Both standards are complementary yet serving different pur-
poses.

The primary aim of OpenMath is to facilitate reliable communication
of mathematical objects between mathematical applications. It ensures se-
mantic content is preserved within the notation. The semantic scope of
OpenMath is defined within its content dictionaries (CD) where all symbols
used are described defining their semantic value. Related symbols and func-
tions are grouped into CD groups. It is expected that applications using
OpenMath declare which CD groups they understand.

MathML however is World Wide Web oriented in that it seeks to display
mathematics on web pages. MathML has two combinable versions, one en-
coding mathematical objects (presentation markup) and the other encoding
mathematical meaning (content markup). Both versions allow authors to
encode both the notation which represents a mathematical object and the
mathematical structure of the object itself. Moreover, authors can mix both
kinds of encoding in order to specify both the presentation and content of a
mathematical idea.

In fact there are strong links between both recommendations. The com-
munities developing both standards are closely related, with some members

2Describing these standards in detail is not in the scope of this report. We do encourage
the reader to have a careful read through both standard specifications [2][3] in order to
better understand this report and its implications.
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belonging to both groups. This has resulted in both standards superceding
each other in some areas.

The core OpenMath CD group is the principal CD group. The core
CD group was designed based on MathML 1.0, extending the set of symbols
covered by MathML 1.0. Its intention is not to be very specific, only covering
everyday and K-12 (kindergarden to high school level) mathematics just as
MathML does.

For completeness, a MathML CD group was introduced in the OpenMath
standard. It is a subset of the core CD group and has the same semantic
scope as do the content elements of MathML. It is expected that most ap-
plications will understand the core CD group, automatically understanding
the MathML CD group.

The recently published MathML 2.0 version has incorporated elements
of the core OpenMath CD group which weren’t before in MathML 1.0. But
in order to keep the scope of content markup down to a reasonable size, the
designers of MathML have restricted the mathematics that it attempts to
cover to high school level mathematics limiting MathML’s ability to convey
mathematical meaning. Because OpenMath is more powerful in this respect,
the designers of MathML have introduced means allowing for extensibility.
It is possible to encode semantic information inside MathML by embeding
OpenMath objects within MathML code.

This demonstrates the close ties existing between both the World Wide
Web Consortium and the OpenMath society. In the MathML 2.0 specifica-
tion one can read: “The MathML content elements are heavily indebted to
the OpenMath project . . . ”

2.4 Current Support

Both standards have received considerable attention, and have mobilized
many developers. Support for MathML3 and OpenMath is being introduced
in many areas now that a future seems to profile itself.

The dominance of Java on the Internet today has made it a good can-
didate for offering a solution to the problem of publishing mathematics.
The flexibility and power of Java applets can be used in conjunction with
MathML or OpenMath to display mathematical formulae.

This approach is currently best represented by WebEQ [15]. WebEQ
is a collection of programs and Java programming libraries dealing with
all aspects of putting math on the Web. Because WebEQ is based on
MathML, WebEQ tools can easily be combined with each other and with
other MathML software to accomplish a wide range of tasks. The applet
takes a representation of an equation as input, and displays it. The rep-
resentation has to be some markup language which the applet supports

3For a comprehensive list of software supporting MathML look at the W3C web site [1]
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(MathML or WebTEX). Another Java application is ICEBrowser [16]. A
browser component written in Java which renders MathML.

By using a Java applet we encounter the same difficulties as when using
embedded graphics. In addition to this, Java applets have a larger initial
download overhead, which can be disturbing to some users. Java applets
usually offer good equation displays, but different vendors supply different
solutions and markup languages.

Another set of applications currently offering MathML support are plug-
ins. The main distinction in principle between using plug-ins or Java ap-
plets is that plug-ins need to be pre-installed on the Internet browser for
any rendering to take place. IBM Techexplorer [17] is a representative ex-
ample under development. It currently supports MathML encodings. IBM’s
approach to the problem is definetely bordering the solution the scientific
community is hoping to see. Techexplorer can display MathML and the
quality of display is acceptable. Hopefully, IBM’s techexplorer initiative
will push other browser vendors and companies to adopt MathML as the
leading standard.

But as with the other temporary solutions, plug-ins also have their lim-
itations. Plug-ins have trouble getting the current HTML document font
size, changing the size of the window to fit the display, or getting the cur-
rent HTML document background color. Plug-ins such as IBM’s are not yet
widespread, and most people are not familiar with plug-in download and
installation.

In the area of computer algebra, soon many computer algebra packages
should have interfaces to both standards. An example of this is the MathML
to REDUCE interface available in REDUCE 3.7, or the MathML interface
built in Mathematica Version 4.

Various programs convert LATEX documents into MathML. This is im-
portant because of the large amount of documents written in LaTeX until
now. An example of a program accomplishing this task is TtM [14] for
instance.

Various equation editors such as MathType or Design Science’s MS equa-
tion editor also support MathML. They manipulate expressions and offer
easy to use graphical user interfaces. It is possible to export equations to
MathML format.

Until now however, both Explorer and Netscape have not yet incorpo-
rated support for MathML, although they have committed themselves in
doing so in the near future. Because these are the most popular browsers,
it is important that they soon provide MathML facilities in order to boost
the use of MathML.

Luis Alvarez Sobreviela OpenMath/MathML Interface
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2.5 The future

“While many in the mathematical and scientific community
have already adopted LATEX as the standard for writing papers, it
appears that MathML is the future of scientific and mathematical
notation on the Web.” Bob Henshaw, UNC.

Regardless of how efficient MathML and OpenMath are in transmit-
ting and displaying mathematics, it is clear that they will only be of any
use if all communities adopt it. It is expected however that most popular
software companies working on the Internet or on computer algebra pack-
ages will soon support MathML and OpenMath. It seems as if MathML
and OpenMath will recieve the necessary support due to the commitment
that various big companies have already shown (IBM, Netscape, Microsoft,
Wolfram, Design Science, and many others).

At the moment some browsers have already implemented MathML ren-
dering facilities (Amaya for instance), and soon other bigger browser vendors
will join the trend. Mozilla has recently released its latest browser which does
render MathML. Netscape should follow soon with Navigator5. MathType
from Design Science has released a new version incorporating various tools
for dealing with MathML and OpenMath. For those not familiar with De-
sign Science, they also make MS Word’s equation editor. Other companies
(mainly Stilo) are developing equation editors with MathML and OpenMath
facilities which will soon hit the market.

While substantial progress has been made, there are still areas in which
more work is required before MathML can be incorporated easily into the
Internet. Further improvement in coordination between browsers and em-
bedded elements will be necessary. Furthermore, higher printing resolution
must be achieved.

MathML and OpenMath are the first XML based markup language to
appear on the Internet. They will show the power and limitations of XML.
An example has been set for other specialist areas which also want to benefit
from the Internet.; areas such as Chemical Engineering or Music are using
XML to develop representation standards. Both standards have been re-
cieved enthousiastically and it will surely not take long before they are used
widely by the scientific community.

Luis Alvarez Sobreviela OpenMath/MathML Interface



Chapter 3

OpenMath/MathML
Translation

MathML and OpenMath are closely related, serving a similar purpose of
conveying mathematics across different applications. The aim of this anal-
ysis is to relate MathML and OpenMath to illustrate their similarities and
differences. We intend it to be application independent, highlighting the
problems arising when developing programs translating MathML to Open-
Math and vice versa.

As is stated in the OpenMath standard [4], OpenMath objects have the
expressive power to cover all areas of computational mathematics. This is
certainly not the case with MathML. However, MathML was designed to be
displayed on any MathML compliant renderer. The possibility to translate
between them would allow OpenMath objects to be displayed, and MathML
objects to have a wider semantic scope. But is a translation possible?

OpenMath and MathML have many common aspects. Some features
of the standards help facilitate the translation, mainly that the structure
of both standards is very similar. They both use prefix operators and are
XML [10] based. They both construct their objects by applying certain rules
recursively. Such similarities facilitate mapping across both standards.

Because both standards are XML based, their syntax is governed by the
rules of XML syntax. In other words, the details of using tags, attributes,
entity references and so on are defined in the XML language specification.
By complying with the XML standard it is possible to use generic XML
generators and validators. These can be programmed for the application
being developed, or existing ones can be used.

Finally, OpenMath has specific content dictionaries mirroring MathML’s
semantic scope, which permit a straightforward mapping between both rec-
ommendations. Since both standards are simply different ways of represent-
ing mathematics, designed with translation in mind, mapping one to the
other is certainly possible.
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We shall look at all the areas of both recommendations where differ-
ences occur and how they pose difficulties to designing a translator. It is
important to understand how objects are constructed and what they repre-
sent. We will then discuss how functions and operators are applied on their
arguments. There are various specific structural differences between both
standards which need to be properly understood; we will attempt to explain
these differences and offer a method of translation for each one. We will also
discuss how MathML supports extensibility and to what extent it is possible
to implement such extensibility to accept new OpenMath symbols. To finish
we will give an explanation of how to handle the translation problem.

Before we start our analysis, it is important that we define a few terms
related to our analysis. We also encourage the reader to have a look at
the standards in order to better appreciate this analysis. MathML and
OpenMath objects convey the meaning of a mathematical expression and
are represented as labelled trees. An object can also be called an expression.
A symbol in OpenMath is used to represent a mathematical concept. For
instance plus or max are considered symbols. We call elements the words
enclosed within <> such as <apply> or <OMA>. Elements enclose other
XML data called their ‘content’ between a ‘start tag’ (sometimes called a
‘begin tag’) and an ‘end tag’, much like in HTML. There are also ‘empty
elements’ such as <plus/>, whose start tag ends with /> to indicate that
the element has no content or end tag.

3.1 Constructing Objects

Constructing objects in MathML and OpenMath is done in similar ways.
MathML uses elements termed containers and OpenMath uses elements
called constructs. They are both closely related, and most of them are
easily interchangeable. The nature of the constructors in both standards is
rather different, but their usage is the same.

OpenMath objects can be created by applying a symbol onto a series
of arguments. These are the objects created by application and are sur-
rounded by <OMA>...</OMA> elements. In MathML the approach is dif-
ferent. MathML possesses more constructors and they are more specific. It
is important to note that OpenMath objects constructed with the <OMA>
element may translate to various constructors in MathML.

In OpenMath for instance, defining a list or a matrix would be done by
applying the application constructor on the list or matrix symbol followed
by the contents of the list or matrix. In MathML however, a list would
require the <list>. . . </list> constructor, and a matrix would need the
<matrix>...</matrix> constructor.

Most OpenMath symbols constructed by application are constructed in
MathML using the <apply> constructor. But there are exceptions which

Luis Alvarez Sobreviela OpenMath/MathML Interface
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OpenMath MathML
<OMA> <interval>, <set>, <list>, <matrix>,

<vector>, <apply>, <lambda>, <reln>.
<OMATTR> attributes associated to a tag
<OMI>, <OMF> <cn>
<OMV> <ci>
<OMSTR> not supported
<OMBIND> not supported
not supported <declare>

Table 3.1: Relation between constructors

do not map to <apply> tags. It is important that all exceptions such
as matrix, list, set and others are determined and that the appropri-
ate MathML constructor is used when translating. Table 3.1 shows what
possible MathML constructors <OMA> can map to.

OpenMath objects can also be constructed using the <OMBIND> element.
This consists in binding a symbol to a function with zero or more bound vari-
ables. MathML does not have an equivalent, and so symbols which use the
binding construct in OpenMath, like lambda or forall, may have different
ways of being constructed in MathML. lambda uses a specific constructor
in MathML, whereas forall uses the <apply> construct. It is very impor-
tant in order to ensure proper translation, to determine which OpenMath
symbols use the binding constructor and what their MathML equivalent is.

There are objects constructed by attributing a value to an object. These
are objects constructed by attribution and employ the <OMATTR> elements.
MathML also allows objects to possess attributed values called attributes.
The translation is straightforward.

There are other constructors which we do not mention in more detail
because there exists a direct mapping between both standards. This is the
case of <OMI>, <OMF>, <OMV> <cn> and <ci>. Table 3.1 shows the
relation between them.

3.2 Elements and Functions

MathML has a classification1 which categorises elements according to the
number of arguments they accept and the types of these arguments. This
classification can be summarised for our purpose into the following:

unary elements accepting 1 argument

binary elements accepting 2 arguments
1MathML standard section 4.2.3
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nary elements accepting 3 or more arguments

operators: elements whose arguments are given following a specific syntax.
This includes symbols such as int, sum, diff, limit, forall and
a few others.

This classification is not explicitly stated in the OpenMath standard
but can also be used since OpenMath symbols fit well into these categories.
By gathering OpenMath and MathML symbols into these defined groups ac-
cording to their syntax, it is possible to define specific translating procedures
which deal with all symbols in one group in the same way.

For instance one procedure could parse through any unary function by
reading in the symbol and then the one argument. Printing out unary
functions would be done by one procedure which would output the symbol
in MathML or OpenMath followed by that one argument.

The advantages of this classification are that it greatly simplifies the
translation. Parsing and generation of all symbols would then be the task
of a few generic procedures. However, symbols contained in the operators
group require more attention, since they have different ways of reading in
arguments. Specific procedures need to be implemented for such cases. We
will discuss these in more detail later.

3.2.1 The Scope of Symbols

When dealing with a function or an operator in mathematics, it is important
that its scope is well defined. MathML and OpenMath both specify the scope
of an operator by enclosing it with its arguments inside opening and closing
tags. In MathML, the opening and closing tags <apply> are employed, and
in OpenMath one uses the opening and closing tags <OMA>.

However, OpenMath’s grammar as it is defined in the OpenMath stan-
dard in section 4.1.2 can produce OpenMath objects where the scope of an
operator is ambiguous, in which case a parser would have great difficulties
validating the syntax for translation. Let us illustrate this problem with the
two OpenMath expressions in figure 3.1 which are grammatically correct.

Example 2 demonstrates how the use of <OMA> tags help define clearly
the scope of each operator. A parser can then without difficulty interpret the
expression and translate it correctly. Example 1, on the other side, shows
how insufficient use of <OMA> tags can lead to ambiguous expressions both
for automatic parsers and humans.

MathML is stricter when defining the scopes of operators. Every oper-
ator must be enclosed with its own <apply> tags. This difference between
both standards is source of problems. The expression in Example 1 does
not allow the scopes of the operators to be determined with accuracy, and
so an equivalent MathML expression cannot be produced.
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Example 1 Example 2

<OMOBJ> <OMOBJ>
<OMA> <OMA>

<OMS cd=arith1 name=plus/> <OMS cd=arith1 name=plus/>
<OMS cd=arith1 name=times/> <OMA>
<OMV name=x/> <OMS cd=arith1 name=times/>
<OMV name=y/> <OMV name=x/>
<OMV name=z/> <OMV name=y/>
<OMI>6</OMI> </OMA>

</OMA> <OMV name=y/>
</OMOBJ> <OMI>6</OMI>

</OMA>
</OMOBJ>

Figure 3.1: The importance of defining scopes

When developing an OpenMath/MathML translator, it is important to
specify that operator scopes in OpenMath must be accurately defined, or
else translation to MathML is not possible. The use of <OMA> tags must be
imposed.

3.3 Differences in Structure

There are MathML and OpenMath elements which require special attention.
Mainly because there are elements constructed differently in MathML as
they are in OpenMath and because some elements have no equivalent in both
standards. Such cases must be well understood before starting to implement
any translator. We shall look at these cases and propose a reliable method for
overcoming the differences and implementing an efficient solution. We will
mention bound variables, element attributes and constants representation.

There exist elements in both standards which represent the same mathe-
matical concept, but where the syntactical structure is different. The follow-
ing list shows these elements: matrices, limits, integrals, definite integrals,
differentiation, partial differentiation, sums, products, intervals, selection
from a vector and selection from a matrix.

3.3.1 Selector functions and Matrices

Let us first look at: matrices, selection from a matrix and selection from a
vector. These elements exist in both recommendations, but differ syntacti-
cally.

Selection from a matrix and from a vector is done by the <selector/>
element in MathML and by the symbols vector selector and matrix selector
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in OpenMath. Because MathML uses the same element to deal both with
matrices and vectors, it is necessary for the parser to determine what the
arguments of the expression are before finding the correct equivalent Open-
Math. If the expression has a matrix as argument, then matrix selector
is the correct corresponding symbol. If the argument is a vector then the
corresponding symbol is vector selector.

It is important to note as well the order of arguments. The MathML
<selector/> tag first takes the vector or matrix object, and then the indices
of selection. In OpenMath it is the other way around. First the indices of
selection are given and then the object.

Another element where differences in structure are important is the
matrix element. OpenMath has two ways of representing matrices. One
representation defined in the "linalg1" CD and the other defined in the
"linalg2" CD. A matrix is defined as a series of matrixrows in "linalg1",
exactly as in MathML. For such matrices, translation is straightforward.

However, "linalg2" defines a matrix as a series of matrix columns.
This representation has no equivalent in MathML. It is important that a
translator is capable of understanding both representations in order to offer
correct translation.

When dealing with a "linalg2" matrix, a procedure can be implemented
which given the matrix columns of a matrix, returns a series of matrix
rows representing the same matrix. From these matrix rows, a MathML
expression can be generated.

3.3.2 Bound Variables

The remaining elements limit, integrals, definite integrals, differentiation,
partial differentiation, sums, and products have a similar structure and can
be treated in a similar way when translating. Following the classification in
section 3.2 these elements go in the operators group.

What characterises these elements is that in MathML they all specify
their bound variables explicitly using the <bvar> construct. However, in
OpenMath, the bound variables are not explicitly stated. OpenMath ex-
pressions are the result of applying the symbol on a lambda expression.
In order to determine the bound variable the parser must retrieve it from
the lambda expression. Let us illustrate this problem by contrasting two
equivalent expressions on figure 3.2

In MathML, the index variable is explicitly stated within the <bvar>
tags. It is part of the <sum/> syntax and is obligatory. In OpenMath, the
sum symbol takes as arguments an interval giving the range of summation
and a function. Specifying the bound variable is not part of the syntax. It
is contained inside the lambda expression. This same difference in structure
exists with the other operators mentioned above.
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OpenMath MathML

<OMOBJ> <math>
<OMA> <apply><sum/>
<OMS cd="arith1" name="sum"/> <bvar>
<OMA> <ci>i</ci>
<OMS cd="interval1" name="interval"/> </bvar>
<OMI> 1 </OMI> <lowlimit>
<OMI> 10 </OMI> <cn>0</cn>
</OMA> </lowlimit>
<OMBIND> <uplimit>
<OMS cd="fns1" name="lambda"/> <cn>100</cn>
<OMBVAR> </uplimit>
<OMV name="x"/> <apply><power/>

</OMBVAR> <ci>x</ci>
<OMA> <ci>i</ci>
<OMS cd="arith1" name="divide"/> </apply>
<OMI> 1 </OMI> </apply>
<OMV name="x"/> </math>
</OMA>
</OMBIND>

</OMA>
</OMOBJ>

Figure 3.2: Use of bound variables

When translating any of these elements, it is necessary to support au-
tomatic generation and decoding of lambda expressions. Thus when going
from OpenMath to MathML, the bound variable and the function described
by the lambda expression need to be extracted to generate valid MathML.

When passing from MathML to OpenMath, the variable contained in-
side the <bvar> tags and the function given as argument would have to be
encoded as a lambda expression. This is possible for all MathML expressions
of this type, and correct OpenMath is simple to produce.

Thus by retrieving bound variable information from OpenMath lambda
expressions, it is possible to translate to MathML. But OpenMath grammar
does not impose the use of lambda expressions to define bound variables.
Because of this flexibility, it is possible to construct OpenMath expressions
which cannot be translated to MathML by an automatic translator. If one
looks at the "calculus1" CD, the OpenMath examples of int and defint do
not specify their variable of integration. A parser would not determine the
variables of integration and an equivalent MathML expression would not be
possible.

This is a problem for an OpenMath/MathML translator with no easy so-
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lution. A parser intelligent enough to extract the correct bound variables of
an expression is very difficult to implement. We recommend that OpenMath
expressions which do not specify all the necessary information for translation
are ignored. The use of lambda expressions should be required.

3.3.3 Intervals

Some operators require an interval to be given specifying the range within
which a variable ranges. The sum or product operator are some good exam-
ples. They both take as argument the interval giving the range of summation
or multiplication. Other operators accepting intervals in some cases are int
and condition.

Both in MathML and OpenMath these operators define ranges with
intervals, but differently. OpenMath defines intervals using specific interval
defining symbols found in the interval1 CD. MathML can use either the
interval element or the tags <lowlimit> and <upperlimit>. These two
tags do not have an OpenMath equivalent and so when encountered must
be transformed into an interval. This is not difficult since one must simply
merge the lower and upper limits into the edges of an interval.

3.3.4 MathML attributes

There are OpenMath symbols which map to the same MathML element,
and are only distinguished by the attributes characterising the MathML
element. A MathML element which illustrates this is <interval>. The
interval element in MathML has a closure attribute which specifies the
type of interval being represented. This attribute takes the following values:
open, closed, open_closed, closed_open. Depending on the attribute
value, a different OpenMath symbol will be used in the translation. The
following example illustrates how one element with different attribute values
maps to different OpenMath symbols.

<interval type="closed">

<OMS cd="interval1" name="interval_cc"/>

are equivalent and so are

<interval type="open">

<OMS cd="interval1" name="interval_oo"/>

When a translator encounters such elements, it is necessary that the
MathML elements generated posses these attributes, or else semantic value
is lost. Table 3.3.4 shows the relation between all MathML elements whose
attributes are of importance and their equivalent OpenMath symbols.
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MathML element Attribute values OpenMath symbol
<interval> default interval

closure="open_closed" interval oc
closure="closed_open" interval co
closure="closed" interval cc
closure="open" interval oo

<tendsto> default above
type="above" above
type="below" below
type="both_sides" null

<set> default set
type="normal" set
type="multiset" multiset

Table 3.2: Equivalent OpenMath symbols to the different attribute values
of MathML elements

3.3.5 MathML constants

In MathML, constants are defined as being any of the following: e, i, pi,
gamma, infinity, true, false or not a number (NaN). They appear within
<cn> tags when the attribute type is set to constant. For instance π would
be represented in MathML as:

<cn type="constant">pi</cn>

In OpenMath, these constants all appear as different symbols and from
different CDs. Hence, we face a similar problem as we did with MathML
attributes. The <cn> tag with the attribute set to constant can map to
different OpenMath symbols.

It is important that the translator detects the use of the constant at-
tribute value and maps the constant expressed to the correct OpenMath
symbol.

MathML also allows to define Cartesian complex numbers and polar
complex numbers. A complex number is of the form two real point numbers
separated by the <sep/> tag. For instance 3 + 4i is represented as:

<cn type="cartesian_complex"> 3 <sep/> 4 </cn>

OpenMath is more flexible in its definition of complex numbers. The real
and imaginary parts, or the magnitude and argument of a complex number
do not have to be only real numbers. They may be variables. This allows
OpenMath to represent numbers such as x+iy or reiθ which cannot be done
in MathML.
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So how should one map such an OpenMath expression to MathML?
Because there is no specific construct for such complex numbers, the easiest
way is to generate a MathML representation using simple operators. The
two expressions in figure 3.3 are equivalent and illustrate how a translator
should perform:

<OMOBJ>
<OMA>

<OMS cd="nums1" name="complex_polar"/>
<OMV name="x"/>
<OMV name="y"/>

</OMA>
</OMOBJ>

<math>
<apply><times/>

<ci> x </ci>
<apply><exp/>

<apply><times/>
<ci> y </ci>
<cn type="constant"> &imaginaryi; </cn>

</apply>
</apply>

</apply>
</math>

Figure 3.3: How to translate complex numbers

The problem is the same when representing rationals, since OpenMath
allows variables to be used as elements of a rational number, whereas MathML
only allows real numbers.

3.3.6 partialdiff and diff

In both standards it is possible to represent normal and partial differen-
tiations. But the structures are different. Let us first look at diff. In
MathML, it is possible to specify the order of the derivative. In Open-
Math, differentiation is always of first order. The trouble here is translating
MathML expressions where the order of derivation is higher than one. There
is no equivalent representation in OpenMath.

What can be done to overcome this discrepancy is to construct an Open-
Math expression differentiated as many times as is specified by the MathML
derivation order. For instance, when dealing with a MathML second or-
der derivative, the equivalent OpenMath expression could be a first order
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derivative of a first order derivative. This will surely generate very verbose
OpenMath in cases where the order of derivation is high, but at least will
convey the same semantic meaning and surmounts OpenMath’s limitation.

The case of partial differentiation is complicated. The representations in
both standards are very different. In MathML one specifies all the variables
of integration and the order of derivation of each variable. In OpenMath
one specifies a list of integers which index the variables of the function.
Suppose a function has bound variables x, y and z. If we give as argument
the integer list {1, 3} then we are differentiating with respect to x and z.
The differentiation is of first order for each variable.

Translating partial differentials from OpenMath to MathML is simple,
because the information conveyed by the OpenMath expression can be repre-
sented without difficulty by MathML syntax. However the other way around
is difficult. Given OpenMath’s limitation of only allowing first order differ-
entiation for each variable, many MathML expressions which differentiate
with respect to various variables and each at a different degree cannot be
translated. We recommend that such MathML expressions are discarded by
the translator.

3.4 Elements not Supported by both Standards

There are some elements which have no equivalent in both standards. These
are mainly the MathML elements <condition> and <declare>and the Open-
Math matrixrow and matrixcolumn symbols.

3.4.1 <condition>

The <condition> element is used often throughout MathML and is neces-
sary to convey certain mathematical concepts. There is no direct equivalent
in OpenMath, making translation impossible for certain expressions.

The <condition> element is used to define the ‘such that’ construct
in mathematical expressions. Condition elements are used in a number of
contexts in MathML. They are used to construct objects like sets and lists
by rule instead of by enumeration. They can be used with the forall and
exists operators to form logical expressions. And finally, they can be used
in various ways in conjunction with certain operators. For example, they
can be used with an int element to specify domains of integration, or to
specify argument lists for operators like min and max.

The example in figure 3.4 represents {∀x|x < 9 : x < 10} and shows how
the <condition> tags can be used in a MathML expression. This MathML
expression has no OpenMath equivalent because OpenMath does not allow
to specify any conditions on bound variables.

The <condition> tags are used in the following MathML elements: set,
forall, exists, int, sum, product, limit, min and max. In all of these elements
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<math>
<apply><forall/>

<bvar>
<ci> x </ci>

</bvar>
<condition>

<apply><lt/>
<ci> x </ci>
<cn> 9 </cn>

</apply>
</condition>
<apply><lt/>

<ci> x </ci>
<cn> 10 </cn>

</apply>
</apply>

</math>

Figure 3.4: Use of <condition>

except limit, the use of <condition> tags makes translation impossible.
The case of limit is different because OpenMath does allow constraints

to be placed on the bound variable; mainly to define the limit point and the
direction from which the limit point is approached.

3.4.2 <declare>

The <declare> construct is used to associate specific properties or meanings
with an object. It was designed with computer algebra packages in mind.
OpenMath’s philosophy is to leave the application deal with the object once
it has received it. It is not intended to be a query or programming language.
This is why such a construct was not defined. A translator should deny such
MathML expressions.

3.4.3 matrixrow, matrixcolumn

In the MathML specification it is stated that ‘The matrixrow elements must
always be contained inside of a matrix’. This is not the case in Open-
Math where the matrixrow symbol can appear on its own. A matrix row
encountered on its own has no MathML equivalent. However, when it is
encountered within a matrix object, then translation is possible.

As we mentioned earlier, it is possible to translate a matrix defined with
matrixcolumns to MathML. However, if a matrixcolumn is found on its own
it does not have a MathML equivalent.
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3.5 Extensibility

OpenMath already possesses a set of CDs covering all of MathML’s semantic
scope. These CDs belong to the MathML CD Group. It is clear that these
CDs must be understood by an OpenMath/MathML interface. There are
as well a few other symbols from other CDs which are not in the MathML
CD Group but can be mapped such as matrices defined in "linalg2".

But OpenMath has the capability of extending its semantic scope by
defining new symbols within new content dictionaries. This facility affects
the design of any OpenMath compliant application. When it comes to trans-
lating to MathML, it is necessary that newly defined symbols are properly
dealt with. A translator should have the ability to recognise any symbol
with no mapping to MathML.

But how do we deal with most symbols outside the MathML CD Group?
Or with new symbols which will continue to appear as OpenMath evolves?
How do we map them to MathML?

MathML, as any system of content markup, requires an extension mech-
anism which combines notation with semantics. Extensibility in MathML is
not as efficient as in OpenMath, but it is possible to define and use functions
which are not part of the MathML specification. MathML content markup
specifies several ways of attaching an external semantic definition to content
objects.

Because OpenMath contains many elements which have no equivalent in
MathML, and because OpenMath can have new CDs amended to it, we will
need to use these mechanisms of extension. The <semantic> element is used
in MathML to bind a semantic definition with a symbol. An example taken
from the MathML specification [3] section 5.2.12 shows how the OpenMath
‘rank’ operator (non existent in MathML) can be encoded using MathML.
The MathML encoding of rank is shown in figure 3.5:

It shows that an OpenMath operator without MathML equivalent is
easily contained within <semantic> tags and can be applied on any number
of arguments.

This method works well when dealing with operators constructed by
application (between <OMA> tags), because MathML also constructs expres-
sions by application (between <apply> tags). It is assumed they take any
number of arguments. However, OpenMath can also construct expressions
by binding symbols to their arguments. As we described earlier (section
3.1), this method has no equivalent in MathML.

So what happens when a new symbol is encountered which is constructed
by binding in OpenMath? Enveloping the new symbol inside <semantic>
tags will produce an incorrect translation.

It is first necessary to determine if the new symbol encountered is con-
2CHECK!!!!http://www.w3.org/WD−MathML2−19991222/chapter5.html#mixing:parallel
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<math>
<apply><eq/>

<apply><fn>
<semantics>

<ci><mo>rank</mo></ci>
<annotation-xml encoding="OpenMath">

<OMS cd="linalg3" name="rank"/>
</annotation-xml>

</semantics>
</fn>
<apply><times/>
<apply><transpose/>

<ci>u</ci>
</apply>
<ci>v</ci>

</apply>
</apply>
<cn>1</cn>

</apply>
</math>

Figure 3.5: Encoding of OpenMath symbol ‘rank’ in MathML

structed by binding or not. In order to do so, a file describing the new
symbol specifying these details could be read in by the translator. This file
could be the CD where the symbol is defined. But unfortunately CDs are
written in a human readable way, and there is no way a program could de-
termine the construction method of a particular symbol or the number and
type of arguments it takes.

One would need to read in the STS file of a symbol. But the best way
would be by checking the tag preceding the new symbol given by the Open-
Math input. If it was <OMBIND> then we are sure this symbol is constructed
by binding. Nonetheless, accurate mapping would be impossible. As we
have seen before, MathML only offers extensibility constructing operators
by application. It is not possible to define new containers, new types, or
new operators constructed differently such as those constructed by binding.

While it is possible to define certain new symbols in MathML, the ad-
vantages of OpenMath extensibility would create problems for a translator
to MathML. This is why it is stated in the OpenMath standard in section
2.5 that ‘it is envisioned that a software application dealing with a specific
area of mathematics declares which content dictionaries it understands’. A
MathML translator deals with the area of mathematics defined by MathML
and should understand all CDs within the MathML CD Group. Any other
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symbols will be properly translated if they are enclosed inside <OMA> tags.
Extensibility is limited by the extension mechanisms offered by MathML.

3.6 How to Handle the Translation problem

Although there are surely many ways to tackle the translation problem, there
are a few requirements which must be respected by any OpenMath/MathML
translator. Mainly that content dictionaries and symbols are dealt with
correctly during translation in both directions.

In OpenMath, symbols always appear next to the content dictionary
they belong to. The <OMS> element always takes two attributes: the symbol’s
name and the symbol’s corresponding CD. Two symbols with the same name
coming from different CDs are considered to be different.

When parsing OpenMath, a translator must ensure that the symbols
read belong to the correct CDs, if not it should conclude the symbol has a
meaning it does not understand and deal with it accordingly. Because an
OpenMath/MathML translator will understand all MathML related CDs,
symbols encountered are considered valid if they come from this CD group.
Symbols with the same name, but from unknown CDs should be enclosed
within <semantic> tags when possible.

We face the same requirement when generating OpenMath. All Open-
Math symbols output from the translator must appear next to their correct
CDs. If we are translating the MathML element <plus/>, the corresponding
OpenMath symbol plus must appear next to the arith1 CD.

This requires a translator to keep a database relating each understood
symbol with its CD. This database must allow the translator to detect un-
known symbols, or to accept some symbols from different CDs with the same
name which have MathML equivalents. This is the case of matrix which be-
longs to various CDs (linalg1, linalg2) as do the symbols in, inverse,
setdiff, vector, arcsinh to name a few.

These symbols belonging to various CDs pose a problem when translating
from MathML to OpenMath. Which CD do we choose? inverse for instance
belongs to fns1 and arith2. Priority should be given to the CD belonging to
the MathML CD group. If both CDs belong to the MathML then common
sense should guide which CD to place. It is up to the designer.

An OpenMath/MathML interface must be very rigorous when dealing
with content dictionaries. Any mistake may produce invalid OpenMath or
reject valid OpenMath expressions.

3.7 Conclusion

It is clear now that a translation is possible. Putting apart the difficulties de-
scribed in this analysis, their are many similarities between both standards.
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As we have seen, expressions are constructed similarly and the application
of functions is practically identical.

However, the various differences of structure can limit the power of a
translator in some situations. Mainly when translating partial differentia-
tions or applying conditions to bound variables.

The design of any translator requires a good understanding of both stan-
dards and how they represent mathematical concepts. The information de-
scribed in this document will guide the design of an OpenMath/MathML
translator.
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Chapter 4

Program Design and
Implementation

The design of an OpenMath/MathML interface must aim to keep the struc-
ture simple, extensible if needed and easy to maintain. This document will
attempt to describe the structure of the overall system and the individual
modules which compose it. A common interface coordinating the separate
components will be analysed and defined.

Furthermore we will explain why the system will be table based and
what advantages this offers for our application. Because both OpenMath
and MathML are XML languages, we must specify the requirements the
translator’s lexer and parser must follow. Finally we will see what new
functionalities can be added to the interface in possible future extensions.

4.1 System architecture

The task of translating one language to another, as is the case of our Open-
Math/MathML interface, can be compared to the task performed by a com-
piler when passing from a programming language to a computer executable
representation.

We will need to lex and parse an expression, represent it in some inter-
mediate language which allows a certain degree of freedom for manipulation,
and then from there an expression can be generated in the target language.

Following this approach, the architecture of the REDUCE OpenMath
to MathML interface is going to be composed of four independent modules.
One for each of the following tasks:

• Passing MathML to the intermediate representation

• Passing OpenMath to the intermediate representation

• Passing from the intermediate representation to MathML

27



CHAPTER 4. PROGRAM DESIGN AND IMPLEMENTATION 28

Figure 4.1: OpenMath/MathML Interface System Architecture

• Passing from the intermediate representation to OpenMath

Dividing the interface into these separate modules gives us the possibility
to better understand the overall process of translation. It has the advantage
of permitting efficient modifications to the system.

If MathML syntax were to change, for instance, it would only be neces-
sary to modify two of the four modules. This separation also makes it easy
to add extensions. By implementing a module going from the intermediate
representation to LATEX, it is possible to extend the interface’s capabilities
to offer OpenMath to LATEX or MathML to LATEX translations. Figure 4.1
illustrates the system architecture.

4.1.1 Module Requirements

Each of these modules has several requirements to respect. These require-
ments ensure the system is efficient and behaves satisfactorily. (Here IR
stands for intermediate representation)

MathML to IR: This module parses through MathML and generates an
equivalent expression in the intermediate representation. It should en-
sure that the input given is not lexically or syntactically incorrect. In
which case the translation process is aborted. Incorrect or unimpor-
tant attribute values should be ignored unless they compromise the
translation process. Both MathML 1.0 and MathML 2.0 expressions
must be accepted as valid and parsed. It should be designed so any
modification in MathML can be easily adapted to.

IR to MathML: This module generates valid MathML from the interme-
diate representation of an expression. The user should have the option
to generate either MathML 2.0 or MathML 1.0, since most applications
today are only MathML 1.0 compliant . In order to embed MathML
into a web page for rendering by a plug-in, there should also be an
option outputting the MathML inside HTML <embed> tags.
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OpenMath to IR: This module reads in OpenMath expressions and trans-
forms them into the intermediate representation. It should ensure that
the input given is not lexically or syntactically incorrect. In which case
the translation process is aborted. Symbols must be checked to see if
they have a MathML equivalent. This means checking each symbol
against the CD it belongs to and then looking up in a table to see
whether a mapping is possible. If there is no equivalent, this module
must encode the OpenMath symbol into the intermediate represen-
tation as an unknown symbol for inclusion in MathML <semantic>
tags.

IR to OpenMath: This module generates valid OpenMath from the in-
termediate representation. It is important that all symbols generated
appear next to the correct CD to which they belong. This is done by
consulting a table containing this information.

Because it is important to specify which OpenMath CDs an application
handles, Appendix A gives a comprehensive list of all the OpenMath CDs
and elements which are supported by the translator.

4.2 The Intermediate Representation

If the breakdown of the system into separate modules is to be effective,
we need a clean interface between all parts. An intermediate representa-
tion representing expressions in a generic way accomplishes this task. For
an intermediate representation to be useful, it is important that it conveys
and preserves all the information MathML and OpenMath objects are ca-
pable of representing. Let us look at the requirements such an intermediate
representation must satisfy for use in our OpenMath/MathML interface.

Both OpenMath and MathML build expressions by using prefix oper-
ators. REDUCE’s symbolic representation of expressions also uses prefix
operators to construct expressions. This connection motivates us to use
prefix operators in our intermediate representation, thus allowing an un-
complicated mapping between the intermediate representation, OpenMath,
MathML and REDUCE’s representation of expressions. Subsequently the
intermediate representation is closely related to the parse trees of each lan-
guage.

Given that MathML elements may take attributes changing their se-
mantic meaning, it is necessary that attribute values are represented by the
intermediate representation. Thus permitting MathML elements mapping
to different OpenMath symbols (depending on their attribute values) to be
correctly translated from one standard to the other. The attributes con-
veyed by the intermediate representation are then interpreted differently by
the various modules according to the context they appear in.
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Considering that OpenMath extensibility is a key issue, our intermediate
representation must be able to encode objects without MathML equivalent.
The unsupported OpenMath symbol and its CD will be passed on from the
OpenMath to IR module to the IR to MathML module so that the
MathML extension mechanism is employed.

Moreover, the intermediate representation will need to be simple to ma-
nipulate. Since RLISP is the programming language in which this interface
is written, we must keep in mind the possibilities and limitations this lan-
guage offers. Therefore the intermediate representation expressions will be
structured as lists. Lists are the basic data structures in RLISP and there
exist many commands permitting very easy and efficient manipulation of
them.

Because our intermediate representation is designed in terms of the syn-
tactic structure of both OpenMath and MathML, and certain subroutines
are attached to the MathML and OpenMath production rules to produce
proper intermediate encoding, we can classify our methodology as syntax-
directed translation [11]. Basically, the actions of the syntax analysis phase
guide the translation. Thus the intermediate code is generated as syntax
analysis takes place.

4.3 Use of Tables in the Translation Process

The complexity and diversity of MathML and OpenMath elements require
that a translator has some way of keeping information concerning all ele-
ments. The parsing and generation of OpenMath requires a translator to
have some way of knowing which content dictionaries symbols belong to.
Similarly, the correct procedures must be employed upon each element en-
countered. This information must be stored in a readily accessible way. It is
important to design these tables and that we understand how each module
will use them to appropriately accomplish their tasks.

The information guiding the translator can be either hand coded into the
program or gathered into tables. Hand coding is complex and useful only
in situations where an element needs to be handled in a very precise way.
Tables however can contain organized information related to each element
useful when parsing and generating expressions.

We believe using a table-based system is more efficient for our applica-
tion and can produce better and more compact code, thus improving code
readability, extensibility and maintenance. Because a translator must deal
with a variety of elements, most of similar structure, a table-based system
permits the translator to relate an element to a set of functions and/or in-
formation. This way, any modifications of the MathML standard can be
easily adapted to by modifying a table or adding a new entry to it.

The idea is to gather in a few tables all the necessary information for
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properly handling all MathML and OpenMath recognized elements. Let
us describe the main tables1 which are used by the interface. To better
understand the system we will describe how they should be used by each
module to accomplish the task.

MathML to IR Module

All MathML elements are stored in the tables constructors!*, relations!*
and functions!*. These tables determine what functions must be called
for each MathML element encountered and what the equivalent intermediate
representation operator is.

When a MathML object is encountered, the first element will inform
us of how the expression is constructed. We look this element up in the
constructors!* table to call the proper function which deals with objects
constructed in this manner.

If the expression constructor is the <reln> element then the relations!*
table is used. This table will determine which function to call as well
as containing the equivalent intermediate representation operator. The
functions!* table is the same as the relations!* table only that it con-
tains all operators appearing within <apply>. . . </apply> instead.

These tables together will inform the translator of how to deal with all
MathML elements

New MathML elements can be added to these tables to modify the trans-
lator’s scope. An existing procedure can be related to the new element, or
a new procedure can be implemented and added to the table next to the
element’s entry. An equivalent intermediate operator must also be defined
here.

IR to MathML Module

When an intermediate representation expression must be translated to MathML
the table ir2om mml!* specifies which function to call for the translation of
each intermediate representation operator. As an intermediate expression is
parsed, this table will ensure that proper production of MathML is achieved.
This table also contains the function to call when producing OpenMath.

New operators are added to this table. The procedure name specifying
how the new IR operator is translated to MathML is also added to the table.

OpenMath to IR Module

OpenMath objects must be thoroughly checked for various reasons. Firstly,
not all OpenMath symbols have MathML equivalents. Table mmleq!* con-
tains all OpenMath symbols which easily translate to MathML. If a symbol is

1These tables are defined in the file tables.red
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not contained within this table then it is searched inside tables special cases!*
and special cases2!*.

Table special cases!* contains all OpenMath symbols which have a
MathML equivalent but under a different name. It also deals with Open-
Math symbols mapping to one MathML element but with different attribute
values. This table will also specify where necessary the correct attribute
types and values the MathML equivalent element must take.

Table special cases2!* contains all OpenMath symbols which require
careful translation. For each element, a specific function is associated. These
functions are specially designed to deal with these elements efficiently.

If a symbol is not contained within any of these tables, then the elements
is considered unknown and the MathML extension mechanism is used to
produce a reasonable translation.

IR to OpenMath Module

Producing OpenMath from the intermediate representation follows a similar
procedure as that described for generation of MathML. The table ir2om mml!*
contains the function to call for each intermediate representation operator
to produce OpenMath.

4.4 XML Lexing and Parsing

Because there are no XML lexers or parsers for REDUCE, it is necessary to
design and implement them. In order to do so it is important to establish
what the requirements of such procedures are.

4.4.1 The Lexer

Both MathML and OpenMath are based on the structures defined by XML.
The lexer must validate XML markup languages and extract the necessary
tokens from the successive characters in the input source.

Hence it is important that our lexer tokenizes XML elements as well as
determining the different attribute types and values an element may possess.
These requirements must be met in order to retrieve the different attributes
contained in MathML elements or to find out what symbol and content
dictionary is expressed by an OpenMath <OMS> tag.

An XML lexer must also be flexible with spaces, ignoring any amount of
spaces or return carriages contained in the input source.

4.4.2 The Parser

The lexical analysis and the following phase, the syntax analysis, will be
grouped together into the same pass. Under that pass the lexer operates
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under the control of the parser. The parser will ask the lexical analyzer for
the next token whenever it needs one. The lexer will return this informa-
tion as well as storing the attribute types and values of the current token
parsed. The parser will not generate a parse tree explicitly but rather go to
intermediate code directly as syntax analysis takes place.

The parser will stop its task when a syntactical error or a misspelled or
unrecognized token is encountered. It should not attempt to correct it. In
some cases a constructive error message2 will be printed to the user.

The parser we will implement will follow the widely used LL(1) parsing
method also known as predictive recursive descent parsing. The parser will
use top-down parsing following the grammars defined in both the MathML
and OpenMath standards and will only need to look at the next token in
the token stream [11].

4.5 Possible Future Extensions

The desire to extend the OpenMath/MathML interface to include new func-
tions or adapt to changes was paramount in the design process. Here we
would like to mention some possible extensions which could be added in the
future.

Evaluation of expressions: It should be possible to extend the interface
to allow evaluation of OpenMath and MathML expressions using RE-
DUCE’s computational power. This extension is possible because the
intermediate representation was designed imitating REDUCE’s inter-
nal representation of expressions. Without difficulty a procedure could
be implemented which would evaluate an intermediate representation
expression by mapping it to REDUCE’s internal representation. The
appropriate modules would then print out the evaluated intermediate
representation as MathML or OpenMath.

Separate Interfaces to REDUCE: For the same reasons as expressed
above, it is possible to modify the interface so it offers a MathML to
REDUCE interface and/or an OpenMath to REDUCE interface. This
would allow a REDUCE user to import and export MathML or Open-
Math expressions separately for use in calculations or for transmission
on the Internet to other applications.

Interfaces to other Representations: Because the system architecture
is designed around the intermediate representation, it is possible to
implement modules which transform the intermediate representation
into other representations such as LATEX, TEX, HTML, or WEBTEX,

2The efficiency of this facility will depend on the time left to correctly implement it
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thus allowing translation from MathML or OpenMath to any of the
mentioned representations.
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Chapter 5

Testing

In order to confirm that the task of interfacing MathML and OpenMath has
been achieved, we must test the program in a variety of situations. We will
be ensuring that all guidelines described in Chapter 3 are properly adhered
to. The testing will also prove the efficiency of the overall design.

The most important feature to look for is that the translation process
does not alter or modify the expressions being translated. Additionally, it
is essential that all results produced by the translator are compliant to the
OpenMath and MathML standards. We will focus on ensuring semantic
value is preserved as well as making sure that CDs appear correctly next
to symbols, MathML attributes are accurate, and that OpenMath symbols
not handled are properly dealt with. Finally we will test MathML outputs
with the widespread MathML renderer: IBM TechExplorer.

We will aim to test varios specific aspects in more detail. We will describe
the testing method and the results obtained.

The testing should verify whether the program accomplishes its task of
translating OpenMath to MathML.

5.1 Translation

In order to verify whether the translation process is attained, we have cre-
ated a test suite comprising over 170 MathML and OpenMath examples,
more than 80 of each. Most of these examples come from the standard
specifications and others have been designed to test specific aspects of the
translator. Many of these examples were extensively used throughout the
implementation phase.

By running these examples through the translator, it was possible to
carefully check if the output produced for each example corresponded to
the expected result. This careful analysis, example by example, has proven
that in most cases, semantic value was preserved and a proper translation
was carried out. However, it is important to concentrate on the difficulties
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arising from translating OpenMath and MathML.

5.1.1 Content Dictionaries

Aim: Given that symbols from different CDs may have the same name
albeit different meanings, we must test the ability of the translator to relate
symbols to their CDs and recognize the difference in meaning different CDs
convey.

Testing method: In the test suite of 170 examples, there are a set of
expressions testing the ability of the translator to relate symbols to their
CDs. These examples contain expressions with symbols from different CDs
but with the same name, to test the translator’s faculty to properly handle
them. There are examples where correct symbols appear next to wrong CDs
and vice versa. The translator should recognize only the valid CDs.

Results: All examples were correctly treated. The translator was capa-
ble of recognizing valid symbols by consulting the tables, translating them
accordingly. The results produced by these examples were very satisfactory.

Aim: To test whether OpenMath expressions generated have symbols ap-
pearing next to the correct CDs.

Testing Method: Running all the examples contained in examples.mml
will generate a large number of OpenMath expressions. By looking at them
carefully we will see if symbols are correctly related to their CDs.

Results: All examples analysed were correct. The generated symbols ap-
peared next to the appropriate CDs. However, whenever a MathML element
mapped to a symbol which belonged to more than one CD (like inverse for
instance), there was no rule determining which CD to place. Nevertheless,
all translation were correct.

5.1.2 MathML Attributes

Aim 1: In many cases attribute values modify the semantic value of MathML
expressions and must be taken into account when translating. We would like
to determine if the translator detects attribute values and takes them into
account when translating.

Aim 2: Various OpenMath symbols map to MathML elements with spe-
cific attribute values. Does the translator detect these symbols in order to
generate MathML elements with their correct attribute values?
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Testing Method: We must gather all examples containing elements whose
attribute values convey semantic meaning. We translate these elements from
MathML to OpenMath and see if the semantic meaning has been preserved.
We then translate back to MathML and the translator will have recognized
these OpenMath elements and reproduced the original MathML element
with the correct attribute value.

Results: All results were satisfactory. Attribute values were recognized,
correctly interpreted and semantic meaning was preserved in all cases.

5.1.3 Extensibility

Aim: To test how well the translator copes with OpenMath symbols hav-
ing no equivalent MathML element. We want to determine if they are prop-
erly translated and preserve their structure and meaning.

Testing Method: There are various types of situations where extensibil-
ity mechanisms must be employed. These are:

• Both the CD and symbol are not recognized

• The symbol is not recognized

• The CD is not recognized

In these three cases, the translator must employ MathML <semantic>
tags to preserve semantic meaning. We will tes expressions based on these
three cases.

Results: The translator automatically detected the unknown symbols and
enveloped them inside <semantic> tags. The translator worked well in cases
where the OpenMath symbol translated was constructed by application. An
example of this is the rank operator seen in figure 3.5. In other cases (such
as binding) the results were poor and in many cases incorrect.

5.2 Standard Compliance

For this translator to produce usable results it must imperatively conform
to MathML and OpenMath standards. This implies that all expressions
produced must be lexically and syntactically correct according to the speci-
fications. We must examine that the translator can parse and generate valid
expressions.
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5.2.1 Parsing of Expressions

Aim: Valid MathML and OpenMath expressions must be parsed without
difficulty by the translator. Lexical and syntax errors must be detected and
attribute values must be extracted for use in translating.

Testing Method: The translator should correctly parse a large amount
of valid MathML and OpenMath examples taken from the standards. These
examples are contained in the 170 examples mentioned earlier and are con-
sidered to be correct. The World Wide Web Consortium also offers a test
suite for testing applications for MathML compliance. This test suite is a
series of valid MathML expressions, which if parsed prove that an applica-
tion is MathML compliant. Unfortunately the URL link to this test suite
was broken throughout the duration of this project and has not been able
to be used.

We will also introduce incorrect expressions to see if the translator de-
clares them as erroneous.

Results: The translator performs well. All supported operators are cor-
rectly parsed. Syntax is validated in both standards, thus distinguishing
amongst correct and incorrect expressions. Unsupported elements as de-
scribed in section refnosupport cause the translator to abort. The translator
is MathML and OpenMath compliant.

5.2.2 Generation of Expressions

Aim: To determine if expressions produced by the translator are MathML
and OpenMath compliant.

Testing Method 1: In order to determine whether the OpenMath ex-
pressions are compliant, we shall introduce them back into the translator. If
the translator correctly parses them then they are compliant. Additionally,
we will check the expressions individually to ensure they are correct.

Testing Method 2: To determine if MathML expressions produced are
MathML compliant, we shall translate them back to OpenMath. If the
translator reads through them correctly then we can conclude the expres-
sions are compliant. Furthermore, we will try and render the generated
MathML expressions using IBM’s TechExplorer. If TechExplorer renders
all MathML expressions generated then we have more reason’s to confirm
that the MathML output is MathML compliant.
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Results: The testing procedures all produced satisfying results. The trans-
lator’s output can be parsed by itself validating the expressions. Further-
more, IBM’s TechExplorer successfully parsed and rendered a large number
of generated MathML1.0 expressions.

The results produced throughout these tests were mostly accurate, and
when not, the translator was corrected. We recomend the user to run all
the examples in examples.om and examples.mml to get a better idea of
the translation efficiency. It is possible that mistakes have pased unnoticed.
Reassuringly, the design is robust enough and most bugs should be quick to
eliminate.

5.3 Interface Limitations

Testing of the interface has also revealed its limitations. Various aspects of
the translation process have not been properly solved. It is important that
we enumerate the areas where the translator performs poorly.

In section 3.3.2 we mentioned that some OpenMath operators encoded
their bound variables within lambda expressions. We also said that this was
not compulsory. The translator however only deals with expressions where
the bound variable is within a lambda expression. Other cases cause the
translator to abort promptly.

The analysis in section 3.2.1 discussed the importance of defining each
operator’s scope. The OpenMath/MathML translator gets confused when
scopes are ambiguous and aborts.

MathML element partialdiff is not translated properly in most cases.
Only when the variables of differentiation have an order of derivation equal
to one. In all other cases the translator produces incorrect results or aborts.

The translator will reject MathML expressions containing operators de-
fined within <semantic> tags. This is clearly something which will have
to be implemented in the future, since the <semantic> tags may contain
OpenMath code.

The translator is capable of distinguishing incorrect expressions from
valid ones. Unfortunately there was not enough time to implement a con-
structive set of error messages. These error messages should have been able
to quickly inform the user why a translation might have been aborted, or
what problems there are with the input impeding tranlation.

Finally, there is an aspect of REDUCE which limits the interface. Con-
trary to XML, which is case sensitive as is stated in the XML standard [10],
REDUCE is case insensitive. Consequently when translating an expression
with variables or function names using capital letters, REDUCE will pro-
duce only small letters. This may in some occasions create confusion for the
user or even distort the semantics.
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5.4 Conclusion

Although 170 examples might not be enough to test the translator in all
situations, they did demonstrate that the translator coped well with the
difficulties of OpenMath/MathML translation. Because these examples are
a representative selection of most OpenMath and MathML operators and
situations, the satisfying results confirm that the task of accurate translating
has been achieved.
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Appendix A

CDs and Symbols handled
by the Interface

alg1 one, zero

arith1 abs, conjugate, divide,
minus, plus, power,
product, root, sum,
times, unary minus

arith2 arg, inverse, times

calculus1 defint, diff, int,
partialdiff

fns1 inverse, lambda

integer1 factorial, gcd ,
quotient, rem

interval1 integer interval,
interval, interval cc,
interval co, interval oc,
interval oo

limit1 both sides, above, below,
limit, null

linalg1 matrix, outerproduct,
scalarproduct, vector,
vectorproduct
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linalg2 vector

linalg3 determinant,
matrix selector,
selector, size,
transpose,
vector selector

list1 list

logic1 and, false, implies, not,
or, true, xor

logic2 equivalent

minmax1 max, min

multiset1 in, intersect, multiset,
notin, notprsubset,
notsubset, prsubset,
set, setdiff, subset,
union

nums1 based integer,
complex cartesian,
complex polar, e, gamma,
i, imaginary, infinity,
nan, pi, rational, real

omtypes float, integer

quant1 exists, forall

relation1 eq, geq, gt, leq, lt, neq

relation2 approx

set1 in, intersect, notin,
notprsubset, notsubset,
prsubset, set, setdiff,
subset, union

stats1 mean, median, mode,
moment, sdev, variance
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transc1 arccos, arccosh, arccot,
arccoth, arccsc, arccsch,
arcsec, arcsech, arcsin,
arcsinh, arctan, arctanh,
cos, cosh, cot, coth,
csc, csch, exp, ln, log,
sec, sech, sin, sinh,
tan, tanh

transc2 arccot, arccoth, arccsc,
arccsch, arcsec, arcsech,
arcsinh, arctanh

typmml complex cartesian type,
complex polar type,
constant type,
fn type, integer type,
list type, matrix type,
rational type, real type,
set type, type,
vector type

veccalc1 curl, divergence, grad,
laplacian
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