FOUNDATIONS OF COMPUTATION 2019 EXAMPLES OF NON-CONTEXT-FREE LANGUAGES. PROOF BY PUMPING LEMMA

1. $L:=\left\{a^{k} b a^{k} b a^{k} b \in\{a, b\}^{*} \mid k \geq 0\right\}$

Suppose, contrary to what we want to prove, that the language L is context-free. Applying the Pumping Lemma (for context-free languages) to L we get the number n. Consider the word $w=a^{n} b a^{n} b a^{n} b$ having the length $3 n+3>n$. Then, by the lemma, w can be represented as $w=u v x y z$. We have $|v x y| \leq n$. Consider two cases.
(1) $v y$ consists only of letters a (it may happen that x contains the letter b, but no more than one). Then the word $u v^{0} x y^{0} z$ contains more letters a between some pair of letters b than between some other pair, which contradicts to $u v^{0} x y^{0} z$ being in L. Thus, our assumption that L is context-free led to contradiction with the Pumping Lemma. Hence L is not context-free.
(2) $v y$ contains a letter b (it can't contain more than one b). Then the word $u v^{0} x y^{0} z$ contains just two letters b, which contradicts to it being in L. Again we got a contradiction.
2. $L:=\left\{a^{p} \in\{a\}^{*} \mid p\right.$ is a prime number $\}$

Suppose that, contrary to what we want to prove, the language is L is contextfree. Applying the Pumping Lemma (for context-free languages) to L we get the number n. Consider $a^{p} \in L$ for a prime number $p \geq n$. Then a^{p} is represented in a form $a^{p}=u v x y z$. Denote $|u x z|=s$ and $|v y|=r$. Then $p=s+r$ and $\left|u v^{i} x y^{i} z\right|=s+i r$. By Pumping Lemma, the word $a^{s+i r}$ belongs to L, in other words, $s+i r$ is a prime number, for every $i \geq 0$.

Take $i=s+2 r+2$. Then $s+i r=s+(s+2 r+2) r=(r+1)(s+2 r)$. Hence, for this choice of i, the number $s+i r$ is a product of two numbers greater than 1 , which means that $s+i r$ is not prime. We get a contradiction, showing that L is not context-free.
3. $L:=\left\{w w \mid w \in\{a, b\}^{*}\right\}$

Suppose that, contrary to what we want to prove, the language is L is contextfree. Applying the Pumping Lemma (for context-free languages) to L we get the number n. Consider the word $\gamma=a^{n+1} b^{n+1} a^{n+1} b^{n+1}$ having the length $4 n+4>n$. Then, by the lemma, γ can be represented as $\gamma=u v x y z$, and the word $u v^{0} x y^{0} z$ belongs to L, i.e., $u v^{0} x y^{0} z=w_{1} w_{1}$ for some $w_{1} \in\{a, b\}^{*}$. It is clear that the first half of $u v^{0} x y^{0} z$ begins with an a, while the second half of $u v^{0} x y^{0} z$ ends with a b (since $|v x y| \leq n$). Therefore w_{1} begins with an a and ends with a b, in other words, is of the kind $w_{1}=a^{\ell} b^{k}$. Consider three cases.
(1) If $v x y$ lies in the first subword $a^{n+1} b^{n+1}$ of γ then w_{1} will end with an a (because the center of the word $u v^{0} x y^{0} z$ will move to the right), which is a contradiction.
(2) If $v x y$ lies in the second subword $a^{n+1} b^{n+1}$ of γ then w_{1} will begin with a b (because the center of the word $u v^{0} x y^{0} z$ will move to the left), which is a contradiction.
(3) If $v x y$ lies in the subword $b^{n+1} a^{n+1}$, and neither entirely in the first nor in the second subword $a^{n+1} b^{n+1}$, then either the number of letters b in the first half of $u v^{0} x y^{0} z$ will be less than the number of letters b in the second half of $u v^{0} x y^{0} z$, or the number of letters a in the second half of $u v^{0} x y^{0} z$ will be less than the number of letters a in the first half of $u v^{0} x y^{0} z$, or both. We got a contradiction.

