FOUNDATIONS OF COMPUTATION 2019 PROBLEM CLASS 7

1. Turing machine for recognizing words of even length in $\Sigma_{0}=\{a\}$. Let $Q=\{s, q\}$.

state	letter	$\delta($ state,letter $)$
s	a	(q, \rightarrow)
q	a	(s, \rightarrow)
s	\sqcup	(e, \sqcup)
q	\sqcup	(o, \sqcup)

Where $e, o \in H$, and e indicates that the size of the input is even while o that it's odd. An example of a computation for this TM:

$$
(s, \triangleright \underline{a} a a),(q, \triangleright a \underline{a} a),(s, \triangleright a a \underline{a}),(q, \triangleright a a a \sqcup),(o, \triangleright a a a \sqcup) .
$$

2. Turing machine with the input alphabet $\Sigma_{0}=\{a, b\}$ such that given any word $w \in \Sigma^{*}$, it will change every a in w to a b, every b to an a, and then will halt.

The machine is $(Q, \Sigma, \delta, s,\{h\})$ where $Q=\{s, q, h\}, h$ is a halting state, and δ is given by:

- $(s, \sqcup) \Rightarrow(h, \sqcup)$,
- $(s, a) \Rightarrow(q, b)$,
- $(s, b) \Rightarrow(q, a)$,
- $(q, \sqcup) \Rightarrow$ anything
- $(q, a) \Rightarrow(s, \rightarrow)$,
- $(q, b) \Rightarrow(s, \rightarrow)$.

3. Describe on implementation level a Turing machine which decides the language $\{w \in\{a, b, c\} \mid w$ contains an equal number of letters a, b and $c\}$.

TM works in three stages.
Stage 1. Being in the initial state q_{c}, TM scans input from left to right. If the input does not contain any letters a, b, c, then then TM terminates with Yes. If the input does contain some of these letters, but TM can't find a, then TM terminates with No. Otherwise, TM finds the first instance of a, replaces a by a service symbol, say $*$, and adopts state q_{a}. Being in the state q_{a}, TM returns to the beginning of the input.

Stage 2. TM acts as described in Stage 1, except q_{c} is replaced in the description by q_{a} and a by b. If TM did not terminate, it ends up being in state q_{b} and observing the beginning of the word.
Stage 3. TM acts as in Stage 2, replacing in the description q_{a} by q_{b} and b by c. If TM does not terminate, it ends up in the state q_{c}, at the beginning of the input.

Now TM goes to Stage 1 and continues until it terminates (TM always terminates because the number of letters a, b, c in the input reduces on each stage, being replaced by $*$).
4. Here is a description of a TM recognizing palindromes in $\{a, b\}$.

The set of states of the Turing machine includes four states, $q_{a}, q_{a}^{\prime}, q_{b}$ and q_{b}^{\prime} which are meant to "memorize" the letters a and b as well as the direction of movement of the working head. The machine reads the first letter, say a, of the input word w, erases it, adopts the state q_{a} and moves to the end of the word (being in the state q_{a}). If the last letter of the word does not match the state, i.e. is b, then the machine halts with No. Otherwise, the machine erases the last letter and moves one step to the left. Let the letter now observed be b. The machine adopts the state q_{b}^{\prime} and moves to the beginning of the current word. Machine thus works comparing the pairs of letters in w which are at the same distance from the ends of w. The word is accepted if it consumes the input without rejection.

